
Evil Genius Series
Bionics for the Evil Genius: 25 Build-it-Yourself MORE Electronic Gadgets for the Evil Genius: Projects
40 NEW Build-it-Yourself Projects
Electronic Circuits for the Evil Genius: 57 Lessons 101 Spy Gadgets for the Evil Genius
with Projects
123 PIC® Microcontroller Experiments for the Evil Electronic Gadgets for the Evil Genius:
Genius
28 Build-it-Yourself Projects
123 Robotics Experiments for the Evil Genius Electronic Games for the Evil Genius
PC Mods for the Evil Genius: 25 Custom Builds to Electronic Sensors for the Evil Genius:
Turbocharge Your Computer
54 Electrifying Projects
Programming Video Games for the Evil Genius 50 Awesome Auto Projects for the Evil Genius Solar Energy Projects for the Evil Genius
50 Model Rocket Projects for the Evil Genius 25 Home Automation Projects for the Evil Genius Fuel Cell Projects for the Evil Genius
Mechatronics for the Evil Genius:
25 Build-it-Yourself Projects
IAN CINNAMON
New York
Chicago
San Francisco
Lisbon
London
Madrid
Mexico City
Milan
New Delhi
San Juan
Seoul
Singapore
Sydney
Toronto

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.
0-07-164353-2
The material in this eBook also appears in the print version of this title: 0-07-149752-8.
All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.
McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs.
For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-4069.
TERMS OF USE
This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.
THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY
WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FIT-NESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

Professional
Want to learn more?
We hope you enjoy this
McGraw-Hill eBook! If
you’d like more information about this book,
its author, or related books and websites,
please click here.
For more information about this title, click here
Contents
Foreword
vii
Project 20: Getting Smarter ...
102
Project 21: Showdown
106
Introduction
ix
Acknowledgments
xi
Tic-Tac-Toe Boxing
The Compiler
xii
Project 22: The Ring
111
Project 23: Fight!!!
115
1 Java Jumpstart
1
Project 24: Knock Out
120
This tutorial section systematically provides
Project 25: Championship
127
all basic skills necessary to program the
4
Shoot-’Em-Up Games
137
games in this book ... and beyond.
Snake Pit
Project 1: The Repeater
1
Project 26: The Arena
137
Project 2: Guess the Password
3
Project 27: Snake Bait
140
Project 3: Number Cruncher
7
Project 28: Snake Bite!
146
Project 4: Number Cruncher Extreme
10
Project 29: King Cobra
151
Project 5: Crack the Code
14
Project 6: Virtual Game Library
17
Space Destroyers
Project 7: Virtual Game Library
Project 30: The Landscape
157
Pro Edition
20
Project 31: Lasers
160
Project 8: Number Guesser
22
Project 32: Retaliation
165
Project 33: Life and Death
174
2 Racing Games
27
Radical Racing
5
Strategy Games
183
Project 9: The Track
27
Bomb Diffuser
Project 10: The Cars
32
Project 34: Bomb Squad Noob
183
Project 11: Collision!
37
Project 35: Expert Diffuser
186
Project 12: Customizing
45
Project 36: Kaboom!!!
191
Project 37: Rising Through the Ranks
197
Screen Skier
Project 13: The Slope
55
Trapper
Project 14: Practice Run
60
Project 38: Men on the Move
202
Project 15: Expert Slope
66
Project 39: Setting the Trap
206
Project 16: Bulldozer
75
Project 40: Trapped!
210
Project 17: Competition
84
Project 41: Showdown
215
3.
Board Games
95
6
Retro Games
221
Whack-an Evil Genius
Oiram
Project 18: The Lab
95
Project 42: The Platform
221
Project 19: Quick! Get ’em!
98
Project 43: Go, Oiram, Go
224
v
Project 44: Bad Guys
230
Project 51: Match Time
269
Project 45: Complicated World
237
Project 52: Beat the Clock
274
Project 53: Photo Finish
280
Java Man
Project 46: Java Man’s Universe
245
Ian Says
Project 47: Java Man Lives!
247
Project 54: Color Quad
289
Project 48: C++ Attacks
251
Project 55: Brain Drain
293
Project 49: Obituaries
257
Project 56: More Rounds,
More Frustration
300
7
Brain Busters
265
Project 57: Play Accessories
307
Memory
Project 50: Grid Design
265
Index
317
Contents
vi
Foreword
Years ago, Ian Cinnamon attended iD Tech Camps Ian, now just 15 years old, has become a luminary at our UCLA location. Ian received programming for his generation. His book, Programming Video instruction in C++ and Java. Year after year, Ian Games for the Evil Genius, offers a step-by-step continued to attend camp, and his programming
approach to programming video games—a dream
prowess grew steadily—but it became apparent
for many young kids.
that he was outpacing his peers and needed new I hear it all the time... “I wish I knew how to challenges.
program my own game,” and “I don’t know where
His instructors commented that Ian was a
to start.” My suggestion is to attend iD Tech
“sponge,” and grasped the programming
Camps and to grab a copy of Ian’s book. The
curriculum quickly—as if he would go home and
crucial steps are knowing where to go and diving study and read and solve problems on his free
in to get started. Ian is empowering his generation time. It turns out, he was doing just that.
and demystifying the code behind games. I can’t I got the opportunity to meet Ian two summers ago wait to see where Ian will be in the next five at our Stanford University location. Ian is a fine years... ten years. Just watch out.
young man with great manners, excellent social skills, and, obviously, some serious programming Pete Ingram-Cauchi
talent. He is one of the best programmers I have seen President and CEO, iD Tech Camps,
at iD Tech Camps, which is an impressive statistic internalDrive, Inc.
considering the thousands of programmers who have graduated from iD Tech Camps over the years.
vii
ABOUT THE AUTHOR
Ian Cinnamon is a 15-year old phenom who has been programming for over 7 years, and is certified in both Java and C++. He is currently a sophomore at Harvard-Westlake School in Los Angeles, California.
viii
Introduction
Board games—Mental minefields to drive you Master your gaming universe
crazy! Games and mazes that make you outthink, outwit, outmaneuver your adversaries! Frustrate What’s better than playing video games? Creating your opponents and bring them to their knees.
your own video games! Games you design, games
Think Tic-Tac-Toe on steroids.
you control ... games played by your rules.
Shoot-’em-up games—Games of lightning When you buy an off-the-shelf game at your
reflex and nerve-wracking action! Transform into a local big box store, it is often the result of months, soldier, a snake handler, an alien warrior, or a sometimes years, of effort by a small army of
stone-throwing Neanderthal as you take aim within professionals using highly complex programming the world you create.
aided by the newest, most powerful computers.
Strategy games—Trap your opponents in an But the one thing they don’t have to make the
escape-proof box or diffuse a bomb before it can perfect game is you, the Game Creator.
destroy the earth! Either way, sweat the challenge.
You are the master of your gaming universe.
Cool heads and fast thinking required.
You create the world you want. You set
Retro games—Have the classics your way!
background colors, levels of difficulty, the shape of Make variations to Mario and Pac-Man by
the game board/playing field, and cheat codes. You programming new twists and turns that make these invent the characters, you design the challenge, old games new again.
you choose how points are scored and how players win ... or lose.
Brain Buster games—Do you have a good memory? Do you perform well under pressure?
If you can think it, you can program it.
Hope so, because in these games, you live or die by what you recall. Make it as simple or as
Your personal video game arcade
complex as your courage allows.
Do you ever get bored playing the same game over and over? Not anymore. You can build an
Programming: the language of games
assortment of games with endless variations. In these pages, you’ll find the secrets to building In music, there are notes; in mathematics, there racing games, board games, shoot-’em-up games, are equations; in language, there are words; and in strategy games, retro games, and brain buster
the video game world, there are commands which games.
bring life to your games. This is called
programming. This is how you tell the computer
Racing games—Get your adrenaline what you want it to do.
pumping! Construct games in which you race
against time, an opponent, or even yourself. Speed All the games you create will be written in Java, and precision rule the road as you zoom around in the most universal of programming languages.
cars, rockets, broomsticks, skis—whatever mode What if you know absolutely nothing about
of transportation your evil genius mind can
programming? What if you have no idea how a
conjure.
computer turns your ideas into actions and images?
ix
No worry! I will lead you step by step through
Comments: Allows you to mark your code, so the basics of this very versatile language.
you know what each line is doing.
Once you have experienced Programming
Flow control: Allows you to repeat code. This is Video Games for the Evil Genius, you’ll not great when you want to retry the game.
only have a library of awesome, personalized
Variables: This is how you keep track of a games, but you’ll be a skilled game creator,
player’s score, name, level, etc.
as well.
“If” statements: Lets you test your variables with conditionals. For example, if you kill an The building blocks to game creation
enemy, your score goes up.
Programming is made up of several building
JOptionPane: Want to display a player’s score?
blocks. You’ll learn them all easily as we go
Want to get a player’s name for a high score list?
through each one step-by-step. Screen shots are This is how you get input and output.
your guide as you master these critical tools. It’s
Random numbers: The gateway to artificial fool-proof. And, like riding a bicycle, once you intelligence. If you want to make an enemy move know how, you never forget.
randomly, you’re at the right building block.
If you are new to programming, Section 1 offers
Pausing: Allows your game to refresh so that a speed-of-light review. If you have previous
your graphics remain crisp and clear.
programming experience, you may want to
Arrays and ArrayLists: Saves time by grouping proceed ahead to Section 2.
similar objects together (enemies, power-ups, etc.).
Some of the programming building blocks used
File IO (Input/Output): Allows you to save the for game creation include:
game ... handy when the boss comes in
Statements: Command central, the backbone of unexpectedly and you’ve been playing video
all games.
games instead of working.
Introduction
x
Acknowledgments
You would not be reading this book if it weren’t Judy Bass, my editor at McGraw-Hill – her
for the dedication and support from the following enthusiasm for this project and her faith in
people:
me from the very beginning will always be
My parents – their unwavering love,
valued.
encouragement, help, and even jokes have been
Pete Ingram-Cauchi, the CEO of iD Tech
vital to writing this book. They’ve always been Camps – his courses at UCLA and Stanford
there for me and I know they always will. I love ignited my enthusiasm for all things
you, Mom and Dad.
programming.
My little sister, Molly – she is my unofficial publicist, telling everyone she meets to buy this book.
xi

The Compiler
Getting your computer to listen to you
You only need three things to start making your own games—a computer (PC, Mac, or Linux), this book ...
and a compiler. This software program translates your code into a language your computer can understand. If you don’t already have a compiler, it can be downloaded FREE through the Internet.
To install Java and its compiler, go to java.sun.com and click on “Java SE” to the right under “Popular Downloads.”
Click “Get the JDK 6 with NetBeans 5.5”; JDK stands for Java Development Kit. This will allow the computer to understand the code. NetBeans is an IDE (Integrated Development Environment) which makes code writing easier.
Install NetBeans by clicking on the setup icon.
Now, the interface: Click “File”>”New Project”
xii

The Compiler
Click “Java Application”
Click “Next” and type in the Project name. It should begin with an uppercase letter and have no spaces.
xiii

Click “Finish.”
In order to create an environment in which you can write your own code, start by deleting “Main.java,”
then right click on the parent folder, and click “New” > “Empty Java File ...”
The Compiler There’s just one thing left to do ... take over the video gaming world!
xiv
Section One
Java Jumpstart
Project 1: The Repeater
Project
Variables are the same as they are in algebra
(2 x = 4), except they store more than just numbers.
Type a message, press two buttons, and the
We’ll learn more about them in the next project.
computer will repeat it.
Flow control
New building blocks
This lets you manipulate what statements to use.
Classes, Statements, Variables
More about this later (Section 1, Project 4).
When first learning Java, there are four essential Every Java program exists within a container
types of code to know: Comments, Statements,
called a Class. A class is created with the
Declarations, and Flow Control.
following code:
public class <class name>
Comments
The class name should always match the file
Comments always begin with //
name, which should always begin with a capital letter and have no spaces.
Compilers ignore comments.
To show that certain code belongs to a class, use They are only used so the programmer can
the {character after the class name and} after document the code. The documentation lets you edit the code.
the code later with ease. Once the code increases to hundreds of lines long, it is extremely difficult to Inside a class, Java will search for the main
remember the function of each line. This will help.
method. A method is a group of code that can be run multiple times. The main method is a special method—Java always calls it first (runs the code Statements
in it). This is what it looks like:
These let you do things! Like printing to the screen ...
public static void main (String[] args)
They always end in semicolons.
For now, just know that this line of code must be present for the main method. We’ll learn what each Declarations
word means later.
Within a class (outside of a method) there can Declarations use statements to create or modify only be declarations and comments. These variables.
declarations are called class variables. Within a 1

Figure 1-1
This code outputs text to the screen
class and a method, there can be declarations, Escape Sequence
Result
comments, flow control, and statements. Class
\n
Creates a new line
variables can be accessed by all methods; method
\t
Indents the line (creates a tab)
variables can only be accessed by the method in
\”
Lets you quote within a quote.
which they are created.
Here is a sample statement, which is also illustrated in Figure 1-1, that lets you print to the screen: Making the game
System.out.println(“This stuff in quotes
So ... if you want to make a program to repeat the is displayed.”);
text you have entered, you must create a class, This code is a method that Java makes for us.
write a main method, and add the
All we need to do is tell it what to display (the System.out.println() code. Whatever you put
words in quotes).
in the quotes, the computer will repeat.
Within quotes, there are escape sequences. These Try this on your own. If it works, you win!
sequences let you manipulate the text in cool ways.
Proceed to the next project.
Just add them inside the quotes:
If you need help, the completed code is below:
//create a class named S1P1
public class S1P1
{
//this is the main method
public static void main (String[] args)
{
//this prints whatever is below.
System.out.println(“Whatever you type here ... will be repeated!”);
}
}
Click “Build” > “Build Main Project” > “OK”
Figure 1-4 illustrates the output of your first game!
This compiles your game, as shown in Figure 1-2.
In the next project, you will learn how to store Click “Run” > “Run Main Project”
important information (such as the “current score”) This runs the game, as shown in Figure 1-3.
and take input from the user!
Project 1: The Repeater Figure 1-2 Compiling the project.
2

Project 2: Guess the Password
Figure 1-3
Clicking this button starts the game.
Figure 1-4
Game output.
Project 2: Guess the Password
Project
So far, you know how to create a simple
Program the computer to verify the correct
program that outputs messages to the screen.
password. In this two player exercise, one player Now, you’ll learn how to create variables,
gives hints while the other types in password
manipulate them, and test them.
guesses. The computer will let the player know when he/she is correct.
Variable creation
New building blocks
This always ends in semicolons!!!!
Here are the basic variable types that you will Variables (Creation and Use), If-statements,
use most often:
Casting, and Input
Integer (“int”)—a positive or negative whole number 3
Double (“double”)—a positive or negative This sets number equal to the sum of the variables.
number with decimals
Variable can be a number or another int/double.
Character (“char”)—a single letter
+ can be substituted for -,*, ?, or %.
String (“string”)—a bunch of characters
% finds the remainder of two numbers
Boolean (“boolean”)—either true or false For chars, you can’t add anything—just set it to another value
How to create (or declare and initialize) a variable: For Strings, you can concatenate Strings.
For “int,” “double,” or “char:”
Concatenation is the combination of two strings, int <name> = <value>;
e.g. String txt = “This is added to” +
“int” can be replaced with “double” or
“this.”
“char”
<name> is replaced with any name starting with How to test your variables
a lower case letter (no numbers or symbols)
For ints, <value> can be any number
Use “if-statements” to test variables with the (e.g. - 10, - 9999, 298)
following code:
For chars, <value> should be the letter that is if(<variable>= =<variable>){}
contained within single quotes (e.g. char
<variable> can be replaced with any variable.
letter = ‘l’;)
If the variable is a String, do not use ==. Instead, For Strings, <value> can be anything as long as do the following (pretend <String> and <String2> it is contained in quotes (e.g. String text =
are the names of two String variables)
“I am a string.”;)
if(<String>.equals(<String2>))
You can also create a variable and not set its To test if it is not equal ...
value (this is called a Declaration). To do this, just end the line early (with a semicolon):
if(!<String>.equals(<String2>))
int number;
Instead of = =, which tests for equality, you can use: Or, if you have already declared a variable and
!= means not equals (for ints/doubles/chars)
want to change (or set) its value, use the following
> means greater than (for ints/doubles)
code (this is called initialization).
< means less than (for ints/doubles)
number = 1;
>= means greater than or equal to
Or, to change the value of an int/double use the (for ints/doubles)
following:
<= means less than or equal to (for ints/doubles) number + +;
So ... “if-statements” run the code in curly
This adds one to “number”
braces when the conditional is true. What if you want some code to run when the conditional is
number− −;
false? Or what if you want to execute code when This subtracts one from “number”
the “if-statement” doesn’t run???
number+=5;
Java can do that! Here’s how:
Add 5 (or any value/variable) to “number”
if(<question>)
{
Project 2: Guess the Password number = <variable> + <variable>;
//code for true
4

Project 2: Guess the Password
}
else if (<question2>)
{
//if this is true
}
else
{
//if none of the above are true
}
Figure 2-1
Input dialog box.
You can use any of the code above (or leave
parts out) as long as the “if” is first and “else”
(if you have one) is last.
Note that input lessens the need for hard-coding.
There are only two ways to use booleans with
Hard-coding is when you actually program the value if-statements (pretend boolean b exists):
of a variable. Therefore, by getting input, you can 1: if(b)
set the variables after the code is compiled.
This means “if b has the value of true”
2: if(!b)
Casting
This means “if b has the value of false”
Casting allows you to turn one type of variable Booleans can be set like other variables:
(such as a String) into another type of variable boolean b = true;
(such as an int). To do this, use the following Or ...
commands (pretend you already have a String
named input)
boolean b = false;
int inputInIntForm = Integer.parseInt(input);
double inputInDoubleForm =
Input
Double.parseDouble(input);
You can now manipulate input!!
Now that you know how to compare values,
you need to learn how to access what the
Making the game
player is typing ... through input. First, add code to the very beginning of the program
This is a text-based game that models the final (before the class declaration). The code is below.
level of an RPG (role-playing game).
Just memorize it for now. It will be explained later.
Set a password by using a String. Ask the user for the password. If he/she gets it right, display a import javax.swing.*;
celebratory message (e.g. “Congratulations! You Now, insert the following code where you want
guessed the password”). Now, let’s get started on to ask the player for input:
the details of the game.
String input = JOptionPane.showInputDialog
First, create the class. Next, create the main (“What’s your name?”);
method. Then, create a String variable. Call it This will create a dialog with an input area that
“input.” Set “input” equal to the user’s input asks “What’s your name?” (see Figure 2-1).
(use the JOptionPane code). Test the “input”
variable against your secret password with the Input is the value that the user entered. The
following code:
value is always a string, but can be turned into other values.
if(input.equals(“secret password”))
5

Display a positive message (e.g. “You
correct password. If incorrect, display a fun insult guessed it: you are an Evil Genius!” using
(e.g. “LoSeR”).
System.out.println()) if the user guessed the
//first, allow for input getting
import javax.swing.*;
//create a class named S1P2
public class S1P2
{
//main method
public static void main (String[] args)
{
//this String will hold the user’s input
String input;
//get input now
input = JOptionPane.showInputDialog(“Enter the secret message.”);
//test for correctness, “Evil Genius” is my secret message!
if(input.equals(“Evil Genius”))
{
//user got it right, so tell him/her!
System.out.println(“YOU GOT THE SECRET MESSAGE!!!”);
}
//if user got it wrong ...
else
{
//tell him/her ...
System.out.println(“WRONG!!! Hahaha!”);
}
}
}
Figures 2-2 through 2-5 illustrate the game play Want to pause the game or create random
of Guess the Password.
numbers to make artificial intelligence simpler?
Just go on to the next project.
Project 2: Guess the Password Figure 2-2 Guessing the secret password.
Figure 2-3
Correct guess!
6

Project 3: Number Cruncher
Figure 2-4
Guessing a different password.
Figure 2-5
Incorrect guess.
Project 3: Number Cruncher
Project
(int) makes sure that it is int variable format Math.round() rounds it to the nearest whole
The program displays a math equation.
number
The player must solve the problem before the
computer counts down from three and displays the correct answer. Can you beat the computer?
Pausing
You can make the computer pause for a given
New building blocks
period by using a very simple command:
Random numbers, Pausing
Thread.sleep(100);
100 is the number of milliseconds you want to
sleep (this can also be an int variable).
Random numbers
Also, you must add something to the last part of All random numbers are of type double, because they the main method:
are between 0 (inclusive) and 1 (exclusive). There is After (String[] args), add “throws Exception”
a simple command to create random numbers.
The entire line should look like:
To create a random double between the value of public static void main (String[] args)
0 and 1, use the following code:
throws Exception
Math.random()
Making the Game
This returns a value, similar to the way
JOptionPane returns values. However, this returns OK ... you can now make a game that can be used a double instead of a String.
in math competitions around the world!
So ... if you want to create a random 1 digit
Create a math equation with two numbers
number, try the following:
using any of these operations: adding,
int rand =
subtracting, multiplying, dividing, or
(int)(Math.round(Math.random()*10));
modding.
7
Declare and initialize two empty int values with Create a new variable to hold the solution of the a random number from 0 to 9.
math problem.
Then, create a new int with a random number
Now, pause the program (to let the user answer form 0–4.
the question).
If it is 0, it will be * (times)
Display the variable that holds the solution.
If it is 1, it will be / (divided by)
If the player calculates the answer correct before If it is 2, it will be + (plus)
the computer displays it, the player wins!
If it is 3, it will be – (minus)
Here’s the code:
If it is 4, it will be % (mod)
//first, allow for input
import javax.swing.*;
//create a class named S1P3
public class S1P3
{
//main method (throws Exception) added for Thread.sleep() public static void main (String[] args) throws Exception
{
//random numbers for the equaton
int num1 = (int)(Math.round(Math.random()*10)); int num2 = (int)(Math.round(Math.random()*10));
//random number for the sign
int sign = (int)(Math.round(Math.random()*3));
//will store the answer
int answer;
//make stuff noticable:
System.out.println(“\n\n*****”);
if(sign= =0)
{
//tell user and calculate answer
System.out.println(num1+ “ * ”+num2);
answer = num1*num2;
}
else if(sign= =1)
{
//tell user and calculate answer
System.out.println(num1+“ / “+num2);
answer = num1/num2;
}
else if(sign= =1)
{
//tell user and calculate answer
System.out.println(num1+“ + “+num2);
answer = num1+num2;
}
else if(sign= =1)
{
//tell user and calculate answer
System.out.println(num1+” − “+num2);
answer = num1−num2;
}
else
{
Project 3: Number Cruncher
//tell user and calculate answer
8

Project 3: Number Cruncher
System.out.println(num1+“ % ”+num2);
answer = num1%num2;
}
//make it easier to read ...
System.out.println(“*****\n”);
//count down from 3
System.out.println(“3 ...”);
Thread.sleep(1000);
System.out.println(“2 ...”);
Thread.sleep(1000);
System.out.println(“1...”);
Thread.sleep(1000);
//print the answer
System.out.println(“ANSWER: “+answer);
}
}
An equation is displayed in Figure 3-1.
In the next project, you will start using loops.
This technique allows you to repeat the code that The computer counts down in Figure 3-2.
runs the game. The screen refreshes itself so that And the answer is displayed in Figure 3-3!
the images are clear and move smoothly.
Figure 3-1
Equation.
Figure 3-2
Countdown.
Figure 3-3
Answer.
9
Project 4: Number Cruncher Extreme
Project
Sample for loop:
for(int i = 0; i <10; i++) {}
This is an add-on to the previous exercise, Number Cruncher. The player can either opt to play again or Whatever is in the parentheses will execute ten change the difficulty level by increasing or
times.
decreasing the time allowed to calculate the answer.
“while” loops
New building blocks
While loops are like for loops, except they do not directly include the variable declaration and
Loops
iteration. They only include the condition.
A sample while loop:
Loops
int i = 0;
while(i<10) {i++;}
It’s time to learn some flow control techniques.
Flow control lets you repeat and execute different The process of a “while loop”: When the
parts of the code at different times, depending on a compiler encounters a while loop, the condition is condition (e.g. x= =4). There are three types of checked. If true, it will enter the loop and continue flow control, called loops:
to recheck the condition after every iteration.
If false, it stops looping.
“for” loops
“do ... while” loops
For loops allow you to execute the code within the curly brace until a given condition is satisfied.
Do ... while loops are almost identical to while loops.
Here’s the format:
Here’s the format:
for(<variable init>; <condition>;
<iterator >) {//repeated code goes here}
int i = 0;
<
do
Variable init> is a standard variable
{
declaration. (e.g. int i = 0;)
i+ +;
<
}
Condition> can be i<0 or i >0 or i>=0 or i<=0 or while(i <10);
anything else that can be inside the if statement’s parentheses.
The Process of a “do ... while loop”: Do ...
<Iterator> can be (and usually is) i+ +.
while loops are the same as while loops, except the code in braces always executes once (before The process of a “for loop”: When the JRE (Java the condition is checked).
Runtime Environment) reaches the variable
declaration, it creates the variable (which exists Special keywords
only in the for statement). If the condition is true, the code runs once. Then, the iterator code runs.
The most important keyword when working with
The condition is checked again and the process loops is “break,” which immediately exits the loop.
Project 4: Number Cruncher Extreme repeats.
Here’s an example:
10
Project 4: Number Cruncher Extreme
for(int i = 0; i <10; i+ +)
Occasionally, the program may try to divide by
{
zero, which will cause it to “throw an exception”
if(i= =1)
break;
(quit). To fix this bug, put the second number
}
random code inside a do ... while loop. If the number is zero, run it again!
Making the game
You may have realized that the answers are not always exact ... they are ints, not doubles. With Change the delay time and degree of difficulty of ints, the equation 3/ produces 1, not 0.75.
the previous exercise, Number Cruncher (1 = evil 4
genius, 10 = mathematically challenged).
Hint:
Let the user input the difficulty level and
count down from that level to zero. The higher the To make the solution value more exact, change all the level, the more time the player is given to answer.
variables of type “int” (except the random sign variable) The lower the level, the less time is given to answer.
to type “double.”
You can ask the user if he/she wants the program Here’s the code:
run again (using a do ... while loop).
//first, allow for input getting
import javax.swing.*;
//create a class named S1P3
public class S1P4
{
//main method (throws Exception) added for Thread.sleep() public static void main (String[] args) throws Exception
{
//this will be how many 1/
seconds the user gets
2
int difficulty;
difficulty = Integer.parseInt(JOptionPane.showInputDialog(“How good are you?\n”+
“1 = evil genius...\n”+“10 = evil, but not a genius”));
//this will tell the loop whether to continue or not: boolean cont = false;
//the contents of the main method are about to be enclosed in a do
//while loop...
do
{
//reset cont to false
cont = false;
//random numbers for the equaton
double num1 = (int)(Math.round(Math.random()*10));
//this do..while loop prevents exceptions
//num 2 must be declared outside of the do while so
//the “while” part can see it. It will still be initialized
//inside of the do part, though.
double num2;
do
{
//init num2
num2 = (int)(Math.round(Math.random()*10));
}
11
while(num2= =0.0); //if it is 0, do it again!
//random number for the sign
int sign = (int)(Math.round(Math.random()*3));
//will store the answer
double answer;
//make stuff noticable:
System.out.println(“\n\n*****”);
if(sign= =0)
{
//tell user and calculate answer
System.out.println(num1+” times “+num2);
answer = num1*num2;
}
else if(sign= =1)
{
//tell user and calculate answer
System.out.println(num1+” divided by “+num2);
answer = num1/num2;
}
else if(sign= =1)
{
//tell user and calculate answer
System.out.println(num1+” plus “+num2);
answer = num1+num2;
}
else if(sign= =1)
{
//tell user and calculate answer
System.out.println(num1+” minush “+num2);
answer = num1-num2;
}
else
{
//tell user and calculate answer
System.out.println(num1+” % “+num2);
answer = num1%num2;
}
//make it easier to read...
System.out.println(“*****\n”);
//count down from difficulty... use a for loop!!!
for(int i = difficulty; i >= 0; i− −)
{
//count down at double speed!
System.out.println(i+“...”);
//instead of waiting a second,
//this time only wait 1/2 second
//per difficulty level.
Thread.sleep(500);
}
//print the answer
System.out.println(“ANSWER: “+answer);
//ask the user if he/she wants to play again
String again;
again = JOptionPane.showInputDialog(“Play again?”);
//if the user says yes, set cont to true.
if(again.equals(“yes”))
Project 4: Number Cruncher Extreme
cont = true;
}
12

Project 4: Number Cruncher Extreme
while(cont); //keep going until continue is false
}
}
Figures 4-1 through 4-3 illustrate the game in Turn the page to learn how to save information play.
to files. This process allows you to call up a player’s progress in any game you create.
Figure 4-1
Inputting the difficulty level
Figure 4-2
Equation and count down
Figure 4-3
Play again?
13

Project 5: Crack the Code
Project
“out” is also a variable name
So far, you have designated space for a file
This is an add-on to Project 2, Guess the Password.
and prepared the computer to save it. Use the
Instead of hard-coding the password, the user can set following code to do the fun part—actually save the password through the pop-up windows. Also, the the file:
password will be permanent: it will be saved to a file.
out.println(<this text is written to the
file>);
New building blocks
“<This text is written to the file>” is
File IO (File Writing, File Reading)
usually of type String
After you have completed making the file, you
must tell the computer that you are done. Use the Creating files
following code:
Every type of file is saved the same way. The only out.flush();
difference is the extension (.doc, .txt, .avi, .jpg, etc).
out.close();
outStream.close();
Extensions exist to tell the computer what program to use to open the file. For example, when you Good job! Now you know how to write and save
store the password for this game, you’ll make a files.
.psswrd file. But, it could also be a .evilGenius or
.<anything> file.
Accessing files
First, create a File by using the following code: Once again, create a File object:
File file = new File(“password.psswrd”);
File file = new File(“password.psswrd”);
So far, this does nothing. It simply holds a space for a file named “password.psswrd.” The file is shown in Figure 5-1.
Now, you’ll learn how to actually save the above file to your computer. First, you must write the following code:
FileOutputStream outStream = new
FileOutputStream(<file name>);
“<File name>” is the name of the file from earlier (in this case, “file”)
“outStream” is the variable name; it can be
renamed anything
PrintWriter out = new
PrintWriter(outStream);
“outStream” is the name of the
Project 5: Crack the Code FileOutputStream from above Figure 5-1
Your file.
14
Project 5: Crack the Code
This time, the String (right now
buffer.close();
fr.close();
“password.psswrd”) is the name of the file you will be opening.
Remember to “throws Exception” and
Next, create a FileReader. A FileReader tells
“import java.io.*;”
the computer to open the file and prepare to
read the text.
Making the game
FileReader fr = new FileReader(file);
When the player first opens the game, two options
“file” is the File to access (from above)
will be displayed: play the game or reset the game.
“fr” is a variable name
If the player chooses to reset the game, a new Now, create a BufferedReader. A BufferedReader password must be set (which will be saved to a file).
tells the computer to read the text from the
If the player chooses to play the game,
opened file.
he/she will be allowed to try to guess the
BufferedReader buffer = new
password.
BufferedReader(fr);
To write the game, use a JOptionPane to offer
“fr” is the name of the FileReader
the player the above options.
“buffer” is a variable name
If the player wants to enter a password (reset the To access the first line of your file, use the game), use your file writing code and save the new following:
password to the file.
String line = buffer.readLine();
If the player opts to try to crack the password, Once you have finished accessing the file, you access the file and check the player’s guess with must tell the computer you are done:
the text in the File.
//first, allow for input getting
import javax.swing.*;
import java.io.*;
//create a class named S1P2
public class S1P2
{
//main method
public static void main (String[] args) throws Exception
{
//this String will hold the user’s input
String input;
//get input now
input = JOptionPane.showInputDialog(“1 to set password,\n”+“2 to unlock the message”);
//this is the file that will be set and opened File file = new File(“password.psswrd”);
//test for entering or setting the password
if(input.equals(“1”))
{
//setting the password ...
//get the password
String p = JOptionPane.showInputDialog(“Enter the password to set”);
//these are the two lines we learned about...
FileOutputStream outStream = new FileOutputStream(file); 15

PrintWriter out = new PrintWriter(outStream);
//set the password
out.println(p);
//close it all
out.flush();
out.close();
outStream.close();
}
//if user wants to test the password
else
{
//first, we must get the password:
FileReader fr = new FileReader(file);
BufferedReader buffer = new BufferedReader(fr);
//this is the password in the file
String password = buffer.readLine();
//get the user’s attempted password
String userPass;
userPass = JOptionPane.showInputDialog(“Enter your guess...”);
//test the password:
if(password.equals(userPass))
{
//if correct
JOptionPane.showMessageDialog(null,“CORRECT!!!!”);
}
else
{
//if incorrect:
JOptionPane.showMessageDialog(null,“WRONG =(”);
}
}
}
}
Figures 5-2 through 5-8 illustrate the game play of Crack the Code.
Figure 5-3
Enter the password.
Figure 5-2
Set or guess the password.
Project 5: Crack the Code
16

Project 6: Virtual Game Library
Figure 5-6
Congrats!
Figure 5-4
Guess the number.
Figure 5-5
Correct guess;
Figure 5-7
Replay the game.
In the next project, you will learn how to hold large amounts of similar objects. A very useful tool in game play when tracking enemies or
power ups.
Figure 5-8
Incorrect password.
Project 6: Virtual Game Library
Project
The data structure that will be covered in this project is called an “array.” An “array” lets you Keep an archive of the games you have created.
store many variables, as long as they are the same type (e.g. int, int, int or double, double, double).
New building blocks
This way, you can look up the value of a variable in the array based on its position.
Arrays
The downside of arrays? It is difficult to add Now that you know how to make some cool
new variables, which are called elements when in basic games, you need to know how to store them an array. But have no fear! A different data
for easy access. This is accomplished with data structure that allows you to easily add new
structures.
elements will be introduced in the next project.
17
If you want to set the value of the element in place Arrays
0 (remember, that’s the first element) to fifty, use the following code:
To simultaneously create and initialize an array, use the following code:
bunchOfInts[0] = 50;
int bunchOfInts[] = {−981,45,−6,7};
Getting values within arrays
This creates an array called “bunchOfInts” with
<variable> = [<element position to edit>]
the arbitrary values −981, 45, −6, and 7.
= <value>;
To just create an array without initializing the If you want to find the value of the element in elements, use the following code:
place 0, use the following code:
int sixInts[] = new int[6];
int num = bunchOfInts[0];
This will create an array that holds six ints, but right now the value of each is empty. Note: you Making the game
must always define the size of the array — in this case, six.
Create a virtual library that can store the names of To access or edit a value/element in an array, the games you have created. The Virtual Game
remember one important fact: The element count Library allows you to access the games by entering starts at zero. For example, in the array the element number.
“bunchOfInts,” the value of the first element
First, put everything in a do ... while loop so (which is located at place 0) is −981. The value of the program can be run again if the user desires.
the second element (which is located at place 1) is Then, create and initialize an array (at the same 45. And you already know the value of the element time) of type String with the values being the titles in place 2. That’s right! It’s −6.
of the previous programs/games.
Setting values within arrays
Next, use a JOptionPane to get input
(the element number).
<arrayName>[<element position to edit>] =
By using the new JOptionPane output code
<value>;
display the name of the game.
//this import stuff lets you use JOptionPane
import javax.swing.*;
public class S1P5
{
public static void main (String[] args)
{
//this will be used in the while part of the do...while boolean cont = false;
do
{
cont = false; //reset cont
//this is the array of Strings with the game names String names[] = {“Define: \”Games\””,”The Dungeon Defender”,
“Regional Math-a-thon”,”National Math-a-thon”};
//now, we’ll ask the user which name to return Project 6: Virtual Game Library
18

Project 6: Virtual Game Library
int element = Integer.parseInt(JOption Pane. showInputDialog(“Which element?”));
//this will be outputted in the output JOptionPane String output = “The Name of the Game is:\n”;
//concat! And get the element
output+=names[element];
//this is the output JOptionPane
JOptionPane.showMessageDialog(null,output);
//get input for repeating
String repeat =JOptionPane.showInput Dialog(“Again?”); if(repeat.equals(“yes”))
cont = true;
}
while(cont); //while cont is true, repeat
}
}
Figures 6-1 through 6-3 illustrate the use of
The next step is learning about ArrayLists.
arrays in Virtual Game Library.
ArrayLists are similar to arrays, except they do more and are easier to use. Continue on!
Figure 6-1
Element number of the game is entered.
Figure 6-2
Title is displayed.
Figure 6-3
Program repeats.
19
Project 7: Virtual Game Library Pro Edition
Project
Here is the code to make an ArrayList (notice
how you do not need to specify a type):
This is an add-on to Virtual Game Library. In the ArrayList structure = new ArrayList();
previous program, the games in the library had to be hard-coded in. Now you can add new games
You cannot initialize values on the same line.
without having to alter the code.
To add a value, use the following code:
structure.add(new Integer(5));
New building blocks
You can add as many elements as you like.
ArrayLists
To get a value (if you know the element (which
always begins at place 0), use the following code: Object tempObj = structure.get(0);
ArrayLists (java.util.*;
Integer tempInt = (Integer)tempObj;
must be imported)
int finalNum = tempInt.intValue();
The first line retrieves the Object from the
ArrayLists hold classes (also known as objects).
ArrayList. The second line turns the object into an Yes ... this is the same as the class you
Integer (to turn it into a Double, replace “Integer”
create when you make a program (in the
with “Double”). The last line turns the Integer code “public class”). For now, however,
into an int (if you are working with Doubles,
you’ll use premade classes. Remember
change “intValue” to “doubleValue” and “int”
when you used Integer.parseInt() and
to “double.”).
Double.parseDouble? Well, Double and
Integer are both classes that an ArrayList can Making the game
hold. To keep things simple, for now, we’ll only use these two classes.
Use the previous projects’s code. Only a few
All classes (Integer and Double) belong to a
changes are needed:
hierarchy. The highest member of every class is Ask the user to enter either 1 to add a new game called an “Object.” Therefore, an ArrayList always or 2 to access a game. Next, turn the array into an returns an “Object,” because it can be cast into the ArrayList. Then, if the user enters 2, use the specific class (Integer or Double) you originally previous project’s code to return the value.
passed in.
If the user enters 1, add the new String to the ArrayList.
//import ...
import javax.swing.*;
import java.util.*;
public class S1P6
{
public static void main (String[] args)
{
Project 7: Virtual Game Library Pro Edition
//the ArrayList
20

Project 7: Virtual Game Library Pro Edition ArrayList games = new ArrayList();
//this will be used in the while part of the do ... while boolean cont = false;
do
{
cont = false; //reset cont
//what do you want to do?
int choice = Integer.parseInt(JOptionPane.
showInputDialog(“Enter\n”+“1 to add a new game\n”+“2 to access games”)); if(choice= =1)
{
//get the name
String name;
name = JOptionPane.showInputDialog(“Game name?”);
//add it!
games.add(name);
}
if(choice= =2)
{
//now, we’ll ask the user which name to return int element = Integer.parseInt(JOptionPane. showInputDialog(“Which element?”));
//this will be outputted in the output JOptionPane String output = “The Name of the Game is:\n”;
//concat! And get the element
output+=((String)games.get(element));
//this is the output JOptionPane
JOptionPane.showMessageDialog(null,output);
}
//get input for repeating
String repeat =
JOptionPane.showInputDialog(“Again?”);
if(repeat.equals(“yes”))
cont = true;
}
while(cont); //while cont is true, repeat
}
}
Figures 7-1 through 7-6 illustrate the use of
ArrayLists in Virtual Game Library Pro Edition.
Proceed to the next project and create an exciting number guessing game utilizing the many skills and concepts you have learned.
Figure 7-1
Either access existing games or add
new games.
21

Figure 7-2
Add a new game.
Figure 7-5
Name of the game.
Figure 7-6
Rerun the program.
Figure 7-3
Access existing game.
Figure 7-4
Enter game number.
Project 8: Number Guesser
Project
Making the game
The computer generates a random number from
Start by generating the random number. Then, use 0 to 100 ... and you have to guess what it is! After a
each guess, the computer offers a hint—too high or do ... while loop. Get input (the user’s guess) and compare it with the correct number using
too low.
if-statements. This will provide hints for the player.
To make this program, you need to put several of The do ... while will exit if the guess is
the building tools you have learned to work:
correct.
Classes, Statements, Variables, Input, Loops,
Comments, Output, Casting, and If-Statements
Project 8: Number Guesser
22

Project 8: Number Guesser
import javax.swing.*;
public class S1WrapUp
{
public static void main (String[] args)
{
//this will hold the user’s guess’
int guess = -1;
//number of user guesses
int count = 0;
//create the number:
int num = (int) (Math.random()*100);
//this is the loop to ask the user:
do
{
guess = Integer.parseInt(JOptionPane. showInputDialog(“Guess a number between 0 and 100!”));
if(guess>num)
JOptionPane.showMessageDialog(null,“Too high”); if(guess>num)
JOptionPane.showMessageDialog(null,“Too low”); count+ +;
}
//keep going until the user gets the number
while(num!=guess);
JOptionPane.showMessageDialog(null,“You guessed the number − “+num+” − in “
+count+” guess(es)!!!”);
}
}
Figures 8-1 through 8-12 depict the game play
of Number Guesser.
If you have trouble writing this code, don’t
despair! Just review the previous projects to
refresh your knowledge of the concepts.
If you are able to do this on your own, consider yourself well on your way to becoming a true Evil Figure 8-2
The guess is too low.
Genius!
Figure 8-1
Guess of 50.
Figure 8-3
Guess of 75.
23

Figure 8-9
Guess of 97.
Figure 8-4
The guess is too low.
Figure 8-5
Guess of 88.
Figure 8-10
Still too low!
Figure 8-6
88 is too low.
Figure 8-11
Guess of 99.
Figure 8-7
Guess of 94.
Figure 8-12
99 is CORRECT!!!
Figure 8-8
Even 94 is too low.
Project 8: Number Guesser
24
Project 8: Number Guesser
Input is used to access the user’s name for a
Java Jumpstart quick review
high-scores list.
Comments Comments let you document code so
Random numbers Random numbers allows for
you know what each part of your game does.
artificial intelligence (make an enemy move
randomly, etc.).
Statements Statements are commands. They are
the backbone of all games.
Pausing Pausing allows the screen to refresh
so the game play graphics will be at optimum
Flow control Loops let you repeat code. This is clarity.
useful if the user wants to retry the game if he/she has lost.
Arrays Arrays keep track of the game
environment (e.g. a list of cars in a racing game, Variables Variables allow you to keep track of the a list of bullets in a shoot ‘em up).
player’s score, points, etc.
ArrayLists Arraylists are used to store players’
If-statements If-statements let you test variables.
names and scores.
For example, you can determine whether a player has any lives left ... or if he’s stone cold dead.
File IO FileIO allows for a permanent high-score list on any game.
JoptionPane JOptionPanes let you get input and output. Output is used to display a player’s score.
25
This page intentionally left blank
Section Two
Racing Games
Project 9: Radical Racing—The Track
For example, in “public class Game” the only
code inside the main method would look like this: Radical Racing
Game g = new Game();
Race cars you build around a track you design
This line of code executes the class’s constructor.
with exciting graphics and sound effects!
A constructor is similar to the main method, except it is automatically called when you create a new instance of the class (by using the code above).
Project
Therefore, all the code necessary to run your game should be in the constructor, not the main method.
Create the environment—a virtual racetrack using a Graphical User Interface (GUI).
A constructor is programmed by using the
following code:
New building blocks
public <class name>()
{
//code goes here
JFrames, Methods
}
Using the “class Game” example, the code
JFrames
would look like this:
public Game(){}
A JFrame is one of the simplest ways to create a Inside the constructor, you need to add
Graphical User Interface. It creates a pop-up box the following four lines of code so that
(similar to a JOptionPane) of a specified size. You you can create the JFrame, set the title, and set can add graphics, buttons, text fields, labels, etc.
the size:
A JFrame, before any graphics or images are
added, is shown in Figure 9-1.
super(“title goes here”);
setSize(400,400);
To create a JFrame, first add “extends JFrame”
setVisible(true);
at the end of the line “public class ...” For example, setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); if you have a class called Game, the line would Good going! You have now created your first
look like this:
GUI! And remember, a GUI is like a blank canvas: public class Game extends JFrame
you can easily add your own shapes, images,
buttons, textfields, or anything else you can
Now, change the main method so it contains
imagine! Read on to learn how to include
only one line of code:
threatening enemies, daring heroes, or even
<class name> <var name> = new <class name>(); disgusting aliens.
27

Figure 9-1
Simple JFrame.
Type the following code outside of the
Now you know how to draw a simple racetrack!
constructor, but within the class:
Hint: Eventually, you are going to need to check public void paint(Graphics g)
if the car goes out of bounds. Plan ahead and save
{
the points in an object called a Rectangle. This super.paint(g);
makes collision detection easy to program. You can
}
then draw the Rectangle by getting its values.
In this method, you can draw any shape you
To make and draw a Rectangle, use the
want — rectangles, squares, circles, arcs, or even following code:
giant letters. For now, however, we will focus on two commands: setting the color and drawing a
Rectangle r1 = new Rectangle(100, 100, 300, 400); rectangle.
g.fillRect(r1.x, r1.y, r1.width, r1.height);
To set the color, use the following code
And, if you want to re-draw the JFrame, simply (you must import java.awt.*;):
type the following code anywhere in your
program:
g.setColor(Color.<any color>);
repaint();
“<any color>” can be replaced with any color you like. In NetBeans, a list of colors to choose Remember—the “public void paint ...” code is
from will pop up when you begin typing “Color.”
always executed when the program is first run.
The list is illustrated in Figure 9-2.
To draw a Rectangle, use the following code:
Methods
g.fillRect(<x>,<y>,<width>,<height>); Methods hold code and allow it to be run
<x>, <y>, <width>, and <height> are all variables multiple times. The primary use of methods is to of type “int.”
allow the programmer to repeat code more easily.
Let’s draw a green rectangle like the one shown You can call (aka run) methods from the
Project 9: Radical Racing—The Track in Figure 9-3.
constructor. They can be called from the
28

Project 9: Radical Racing—The Track
Figure 9-2
Some of the many colors available.
constructor or from another method (but not the
“<return type>” should be “void” if the method main method). A method can take in a variable
returns nothing. If it returns an int, it should be (also known as an argument), return (send back)
“int.” If it returns an Integer, it should say a variable, do both, or do neither.
“Integer.” It can be any primitive (int, double, char To create a method, use the following code:
etc.) or object.
“<
public <return type> <name> (arguments) name>” is the name of a method. Name it
{
anything, as long as it starts with a letter.
//code
}
Figure 9-3
Simple green rectangle inside of a JFrame.
29
“arguments” are the variables that the method
To call a method (the one named “sample”), use takes in when called. They are separated by
the following code:
commas. For example, if you want a method to
sample(1, 4.563);
take in two arguments, an int and a double, you would use the following code:
This passes in the arguments “1” and “4.563.”
If “sample” returns an int, you can get the
public void sample(int i, double d){}
returned value by using the following code:
Inside of the method, “i” and “d” are the
variable names of the arguments that are passed in.
int i = sample(1, 4.563);
To return a value, use the following code:
Making the game
return <variable>;
<variable> must be the return type you specified Now, draw a virtual racetrack. The completed code when you created the method.
is below:
//import everything:
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
//this creates the class where you use JFrame
public class G1P1 extends JFrame
{
//this is the constand that will hold the screen size final int WIDTH = 900, HEIGHT = 650;
/*THE FOLLOWING ARE ALL OF THE RECTANGLES THAT WILL BE DRAWN*/
/*
*The following code (creating the Rectangles) may seem complicated at
*first, but it only seems that way because it creates the pieces
*based on the WIDTH and HEIGHT. In your version, you could just hard
*code values.
*/
//create rectangles that will represent the left, right, top, bottom,
//and center
Rectangle left = new Rectangle(0,0,WIDTH/9,HEIGHT); Rectangle right = new Rectangle((WIDTH/9)*9,0,WIDTH/9,HEIGHT); Rectangle top = new Rectangle(0,0,WIDTH, HEIGHT/9); Rectangle bottom = new Rectangle(0,(HEIGHT/9)*9,WIDTH,HEIGHT/9); Rectangle center = new
Rectangle((int)((WIDTH/9)*2.5),(int)
((HEIGHT/9)*2.5), (int)((WIDTH/9)*5),(HEIGHT/9)*4);
//these obstacles will obstruct the path and make navigating harder Rectangle obstacle = new
Rectangle(WIDTH/2,(int)((HEIGHT/9)*7),WIDTH/10,HEIGHT/9); Rectangle obstacle2 = new
Rectangle(WIDTH/3,(int)((HEIGHT/9)*5),WIDTH/10,HEIGHT/4); Rectangle obstacle3 = new
Rectangle(2*(WIDTH/3),(int)((HEIGHT/9)*5),WIDTH/10,HEIGHT/4); Rectangle obstacle4 = new Rectangle(WIDTH/3,HEIGHT/9,WIDTH/30,HEIGHT/9); Rectangle obstacle5 = new Rectangle(WIDTH/2,(int)((HEIGHT/9)*1.5),WIDTH/30,HEIGHT/4); Project 9: Radical Racing—The Track
30
Project 9: Radical Racing—The Track
//the following rectangle is the finish line for both players Rectangle finish = new Rectangle(WIDTH/9,(HEIGHT/2)−HEIGHT/9, (int)((WIDTH/9)*1.5), HEIGHT/70);
//the following rectangle is the start line for the outer player Rectangle lineO = new
Rectangle(WIDTH/9,HEIGHT/2,(int)((WIDTH/9)*1.5)/2,HEIGHT/140);
//the following rectangle is the start line for the inner player Rectangle lineI = new Rectangle(((WIDTH/9)+((int)((WIDTH/9)*1.5)/2)), (HEIGHT/2)+(HEIGHT/10),
(int)((WIDTH/9)*1.5)/2, HEIGHT/140);
//the constructor:
public G1P1()
{
//the following code creates the JFrame
super(“Radical Racing”);
setSize(WIDTH,HEIGHT);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); setVisible(true);
}
//this will draw the cars and the race track
public void paint(Graphics g)
{
super.paint(g);
//draw the background for the racetrack
g.setColor(Color.DARK_GRAY);
g.fillRect(0,0,WIDTH,HEIGHT);
//when we draw, the border will be green
g.setColor(Color.GREEN);
//now, using the rectangles, draw it
g.fillRect(left.x,left.y,left.width,left.height); g.fillRect(right.x,right.y,right.width,right.height); g.fillRect(top.x,top.y,top.width,top.height);
g.fillRect(bottom.x,bottom.y,bottom.width,bottom.height); g.fillRect(center.x,center.y,center.width,center.height); g.fillRect(obstacle.x,obstacle.y,obstacle.width,obstacle.height); g.fillRect(obstacle2.x,obstacle2.y,obstacle2.width,obstacle2.height); g.fillRect(obstacle3.x,obstacle3.y,obstacle3.width,obstacle3.height); g.fillRect(obstacle4.x,obstacle4.y,obstacle3.width,obstacle4.height); g.fillRect(obstacle5.x,obstacle5.y,obstacle5.width,obstacle5.height);
//set the starting line color to white
g.setColor(Color.WHITE);
//now draw the starting line
g.fillRect(lineO.x,lineO.y,lineO.width,lineO.height); g.fillRect(lineI.x,lineI.y,lineI.width,lineI.height);
//set the color of the finish line to yellow
g.setColor(Color.YELLOW);
//now draw the finish line
g.fillRect(finish.x,finish.y,finish.width,finish.height);
}
//this starts the program by calling the constructor: public static void main (String[] args)
{
new G1P1();
}
}
31

A screenshot of the completed track is displayed In the next project, you will make Radical
in Figure 9-4.
Racing come to life by creating two cars that
accelerate forward. Vroom! Vrooooom!
Figure 9-4
Radical Racing track.
Project 10: Radical Racing—The Cars
Project:
following code inside the main class but outside of any methods or constructors:
Now that you can create a GUI, you are going to public class <name> extends Thread
make it come to life. Using Threads (which let
{
}
multiple things happen at once), you will make two cars accelerate in a forward motion.
“<name>” can be anything, as long as it is different from the main class’s name.
New building blocks:
Inside of the thread, you must make a mandatory method (it must exist in order for the program to Threads/Inner Classes
compile). Use the following code:
public void run() {}
Threads/inner classes
Inside this method, we will want one of the cars to move forward. Therefore, there should be an To create a Thread, you must first program an
infinite while loop:
Project 10: Radical Racing—The Cars “inner class.” This is how you do it: type the 32
Project 10: Radical Racing—The Cars
while(true)
Move m = new Move();
{
m.start();
}
Inside the while loop, you should insert the
Making the game
following code.
try
First, draw a Rectangle to represent the car
{
(you will learn to customize your own speed-
//code
demon racers images in Project 12). Then,
}
catch(Exception e) {break;}
program a Thread (using an inner class). Insert the This code checks for errors inside the “try”
run method, add the while loop, and add the
block. If one is found, the computer executes the
“try ...” code. Next, create a global variable to code in the “catch” block. In this case, if an error keep track of the first car’s speed.
is found, “break” is called, which exits the infinite Inside of the “try ...” code, slowly increase the while loop.
speed until the car reaches its maximum velocity (use 4). Then, make the car move forward by
The controls that make the car move should be
altering the “y” value of its rectangle by adding it in place of “//code”
to the car’s speed. Finally, refresh the screen and Once you are done making your Thread, call it
add in a delay (using Thread.sleep(75);).
from the constructor using the following code
If you can get that working, try adding the
(in this example, Move is the name of your inner second car.
class):
The completed code is below.
//import everything:
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
//this creates the class where you use JFrame
public class G1P2 extends JFrame
{
//this is the constand that will hold the screen size final int WIDTH = 900, HEIGHT = 650;
//these will keep track of each player’s speed: double p1Speed =.5, p2Speed =.5;
//create rectangles that wil represent the left, right, top, bottom, and
//center
Rectangle left = new Rectangle(0,0,WIDTH/9,HEIGHT); Rectangle right = new Rectangle((WIDTH/9)*8,0,WIDTH/9,HEIGHT); Rectangle top = new Rectangle(0,0,WIDTH,HEIGHT/9); Rectangle bottom = new Rectangle(0,(HEIGHT/9)*8,WIDTH,HEIGHT/9); Rectangle center =
newRectangle((int)((WIDTH/9) *2.5),(int)((HEIGHT/9)*2.5),(int) ((WIDTH/9)*5), (HEIGHT/9)*4);
//these obstacles will obstruct the path and make navigating harder Rectangle obstacle = new Rectangle(WIDTH/2,(int)((HEIGHT/9)*7), WIDTH/10,HEIGHT/9);
Rectangle obstacle2 = new
Rectangle(WIDTH/3,(int)((HEIGHT/9)*5),WIDTH/10,HEIGHT/4); Rectangle obstacle3 = new
33
Rectangle(2*(WIDTH/3),(int)((HEIGHT/9)*5),WIDTH/10,HEIGHT/4); Rectangle obstacle4 = new Rectangle(WIDTH/3,HEIGHT/9,WIDTH/30,HEIGHT/9); Rectangle obstacle5 = new Rectangle(WIDTH/2,(int) ((HEIGHT/9)*1.5),WIDTH/30,HEIGHT/4);
//the following rectangle is the finish line for both players Rectangle finish = new Rectangle(WIDTH/9,(HEIGHT/2)−HEIGHT/9, (int) ((WIDTH/9)*1.5),HEIGHT/70);
//this is the rectangle for player 1’s (outer) car: Rectangle p1 = new Rectangle(WIDTH/9,HEIGHT/2, WIDTH/30,WIDTH/30);
//this is the rectang;e for player 2’s (inner) car: Rectangle p2 =
new Rectangle(((WIDTH/9)+((int)((WIDTH/9)*1.5)/2)),(HEIGHT/2)+ (HEIGHT/10), WIDTH/30,WIDTH/30);
//the constructor:
public G1P2()
{
//the following code creates the JFrame
super(“Radical Racing”);
setSize(WIDTH,HEIGHT);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); setVisible(true);
//start the inner class (which works on its own, because it is a
//Thread)
Move1 m1 = new Move1();
Move2 m2 = new Move2();
m1.start();
m2.start();
}
//this will draw the cars and the race track
public void paint(Graphics g)
{
super.paint(g);
//draw the background for the racetrack
g.setColor(Color.DARK_GRAY);
g.fillRect(0,0,WIDTH,HEIGHT);
//when we draw, the border will be green
g.setColor(Color.GREEN);
//the following rectangle is the start line for the outer player Rectangle lineO = new
Rectangle(WIDTH/9,HEIGHT/2,(int)((WIDTH/9)*1.5)/2,HEIGHT/140);
//the following rectangle is the start line for the inner player Rectangle lineI = new Rectangle(((WIDTH/9)+((int)((WIDTH/9)*1.5)/2)), (HEIGHT/2)+(HEIGHT/10),(int)((WIDTH/9)*1.5)/2,HEIGHT/140);
//now, using the rectangles, draw it
g.fillRect(left.x,left.y,left.width,left.height); g.fillRect(right.x,right.y,right.width,right.height); g.fillRect(top.x,top.y,top.width,top.height);
g.fillRect(bottom.x,bottom.y,bottom.width,bottom.height); g.fillRect(center.x,center.y,center.width,center.height); g.fillRect(obstacle.x,obstacle.y,obstacle.width,obstacle.height); g.fillRect(obstacle2.x,obstacle2.y,obstacle2.width,obstacle2.height); g.fillRect(obstacle3.x,obstacle3.y,obstacle3.width,obstacle3.height); g.fillRect(obstacle4.x,obstacle4.y,obstacle3.width,obstacle4.height); g.fillRect(obstacle5.x,obstacle5.y,obstacle5.width,obstacle5.height);
//set the starting line color to white
Project 10: Radical Racing—The Cars
34
Project 10: Radical Racing—The Cars
g.setColor(Color.WHITE);
//now draw the starting line
g.fillRect(lineO.x,lineO.y,lineO.width,lineO.height); g.fillRect(lineI.x,lineI.y,lineI.width,lineI.height);
//set the color of the finish line to yellow
g.setColor(Color.YELLOW);
//now draw the finish line
g.fillRect(finish.x,finish.y,finish.width,finish.height);
//set the color to blue for p1
g.setColor(Color.BLUE);
//now draw the actual player
g.fill3DRect(p1.x,p1.y,p1.width,p1.height,true);
//set the color to red for p2
g.setColor(Color.RED);
//now draw the actual player
g.fill3DRect(p2.x,p2.y,p2.width,p2.height,true);
}
private class Move1 extends Thread
{
public void run()
{
//now, this should all be in an infinite loop, so the process
//repeats
while(true)
{
//now, put the code in a “try” block. This will let the
//program exit
//if there is an error.
try
{
//first, refresh the screen:
repaint();
//increase speed a bit
if(p1Speed<=5)
p1Speed+=.2;
p1.y− =p1Speed;
//this delays the refresh rate:
Thread.sleep(75);
}
catch(Exception e)
{
//if there is an exception (an error), exit the loop.
break;
}
}
}
}
private class Move2 extends Thread
{
public void run()
{
//now, this should all be in an infinite loop, so the process
//repeats
while(true)
{
//now, put the code in a “try” block. This will let the 35

//program exit
//if there is an error.
try
{
//first, refresh the screen:
repaint();
//increase speed a bit
if(p2Speed<=5)
p2Speed+=.2;
p2.y−=p2Speed;
//this delays the refresh rate:
Thread.sleep(75);
}
catch(Exception e)
{
//if there is an exception (an error), exit the loop.
break;
}
}
}
}
//this starts the program by calling the constructor: public static void main (String[] args)
{
new G1P2();
}
}
Figures 10-1 and 10-2 illustrate the game play of Go on to the next project to learn how to add
Radical Racing.
collision detection. And that’s not all! Your keyboard will be turned into your own steering wheel.
Project 10: Radical Racing—The Cars Figure 10-1 Radial Racing.
36

Project 11: Radical Racing—Collision!
Figure 10-2
Cars accelerating forward.
Project 11: Radical Racing—Collision!
Project
Let’s say you want to check for a collision between Rectangles r1 and r2. Use the following code:
Program the cars to bounce back and slow
if(r1.intersects(r2))
down if they run into each other or the boundaries.
Plus, transform your keyboard into a steering
To check for multiple collisions, you can use the wheel by assigning specific keys to direct the
“and” or “or” keyword (in if-statements). “And” is racers.
“&&” and “or” is “||”
New building blocks
Collision detection and KeyListener
Collision detection
Collision Detection (checking to see if objects hit each other, as illustrated in Figure 11-1) is easy in Java. Because you created all of your graphics with Rectangles, we can easily check for
collisions: Rectangle has a built-in “intersects”
method.
Figure 11-1
Example of collision detection.
37
For example, to see if Rectangle r1 hit r2 or r3,
“keyTyped” is called after a key is pressed and use the following code:
released. You will be using “keyTyped” most often.
Inside of “keyTyped” you can use an if-statement if(r1.intersects(r2) || r1.intersects(r3))
to check what key was pressed. Depending on the key, you can then change the game by altering
KeyListener
such variables as the car’s direction.
To figure out what key has been pressed, use the The KeyListener lets the computer receive keyboard following line:
input from the user. This will be very useful when e.getKeyChar()
you let the players control the direction of their cars.
To use a KeyListener, you must add the following code to your “public class ...” line:
Making the game
implements KeyListener
Create global variables for the car’s direction.
This can also be added to the inner classes
Make them of type “int.” If the value is 0, the car (Threads).
travels up; if it is 1, the car heads left; etc. To keep Then, inside the constructor (or “run” method, if things simple, create final variables. For example, you are dealing with Threads), type the following initialize an int called “UP” and set its value to code:
zero. Then, if you need to see if the car is going up, compare it to “UP” instead of 0.
addKeyListener(this);
Next, use the KeyListener to change the
This line tells the keyboard to “wake up” and
direction of the player. Also, make the direction start listening for keyboard commands.
change by using if statements to test the direction Next, you must add three methods to your code: of the car and alter “x” if it is going left/right and alter “y” if it is going up/down.
public void keyPressed(KeyEvent e){}
public void keyReleased(KeyEvent e){}
Let’s check to see if the player has collided with public void keyTyped(KeyEvent e){}
a wall or the other car. If so, set the player’s speed Each of these methods are automatically called to a negative value so the car moves backwards when a key is typed. “keyPressed” is called when before picking up speed.
the key is pushed down. “keyReleased” is called The completed code is below:
when you let go of a key after pressing it.
//RADICAL RACING
//Project 11
//By Ian Cinnamon
//import everything:
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
//this creates the class where you use JFrame
public class G1P3 extends JFrame
{
//this is the constand that will hold the screen size final int WIDTH = 900, HEIGHT = 650;
//these will keep track of each player’s speed: Project 11: Radical Racing—Collision!
double p1Speed =.5, p2Speed =.5;
38
Project 11: Radical Racing—Collision!
//these are ints that represent directions:
final int UP = 0, RIGHT = 1, DOWN = 2, LEFT = 3;
//these will keep track of the player’s directions (default = up) int p1Direction = UP;
int p2Direction = UP;
//create rectangles that wil represent the left, right, top, bottom, and center Rectangle left = new Rectangle(0,0,WIDTH/9, HEIGHT); Rectangle right = new Rectangle((WIDTH/9)*8,0,WIDTH/9,HEIGHT); Rectangle top = new Rectangle(0,0,WIDTH,HEIGHT/9); Rectangle bottom = new Rectangle(0,(HEIGHT/9)*8,WIDTH,HEIGHT/9); Rectangle center = new Rectangle((int)((WIDTH/9) *2.5),(int)((HEIGHT/9)*2.5), (int)((WIDTH/9)*5),(HEIGHT/9)*4);
//these obstacles will obstruct the path and make navigating harder Rectangle obstacle = new Rectangle(WIDTH/2,(int)((HEIGHT/9)*7),WIDTH/10,HEIGHT/9); Rectangle obstacle2 = new Rectangle(WIDTH/3,(int)((HEIGHT/9)*5),WIDTH/10,HEIGHT/4); Rectangle obstacle3 = new Rectangle(2*(WIDTH/3),(int)((HEIGHT/9)*5),WIDTH/10,HEIGHT/4); Rectangle obstacle4 = new Rectangle(WIDTH/3,HEIGHT/9,WIDTH/30,HEIGHT/9); Rectangle obstacle5 = new Rectangle(WIDTH/2,(int)((HEIGHT/9)*1.5), WIDTH/30,HEIGHT/4);
//the following rectangle is the finish line for both players Rectangle finish = new Rectangle(WIDTH/9,(HEIGHT/2)−HEIGHT/9, (int)((WIDTH/9)*1.5),HEIGHT/70);
//this is the rectangle for player 1’s (outer) car: Rectangle p1 = newRectangle(WIDTH/9,HEIGHT/2, WIDTH/30,WIDTH/30);
//this is the rectang;e for player 2’s (inner) car: Rectangle p2 = new Rectangle(((WIDTH/9)+ ((int)((WIDTH/9)*1.5)/2)),(HEIGHT/2)+
(HEIGHT/10),WIDTH/30,WIDTH/30);
//the constructor:
public G1P3()
{
//the following code creates the JFrame
super(“Radical Racing”);
setSize(WIDTH,HEIGHT);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); setVisible(true);
//start the inner class (which works on its own, because it is a Thread) Move1 m1 = new Move1();
Move2 m2 = new Move2();
m1.start();
m2.start();
}
//this will draw the cars and the race track
public void paint(Graphics g)
{
super.paint(g);
//draw the background for the racetrack
g.setColor(Color.DARK_GRAY);
g.fillRect(0,0,WIDTH,HEIGHT);
//when we draw, the border will be green
g.setColor(Color.GREEN);
//the following rectangle is the start line for the outer player Rectangle lineO = new Rectangle(WIDTH/9,HEIGHT/2,(int)((WIDTH/9)*1.5)/2,HEIGHT/140);
//the following rectangle is the start line for the inner player Rectangle lineI = new Rectangle(((WIDTH/9)+((int)((WIDTH/9)*1.5)/2)), (HEIGHT/2)+(HEIGHT/10), (int)
((WIDTH/9)*1.5)/2,HEIGHT/140);
39
//now, using the rectangles, draw it
g.fillRect(left.x,left.y,left.width,left.height); g.fillRect(right.x,right.y,right.width,right.height); g.fillRect(top.x,top.y,top.width,top.height);
g.fillRect(bottom.x,bottom.y,bottom.width,bottom.height); g.fillRect(center.x,center.y,center.width,center.height); g.fillRect(obstacle.x,obstacle.y,obstacle.width,obstacle.height); g.fillRect(obstacle2.x,obstacle2.y,obstacle2.width,obstacle2.height); g.fillRect(obstacle3.x,obstacle3.y,obstacle3.width,obstacle3.height); g.fillRect(obstacle4.x,obstacle4.y,obstacle3.width,obstacle4.height); g.fillRect(obstacle5.x,obstacle5.y,obstacle5.width,obstacle5.height);
//set the starting line color to white
g.setColor(Color.WHITE);
//now draw the starting line
g.fillRect(lineO.x,lineO.y,lineO.width,lineO.height); g.fillRect(lineI.x,lineI.y,lineI.width,lineI.height);
//set the color of the finish line to yellow
g.setColor(Color.YELLOW);
//now draw the finish line
g.fillRect(finish.x,finish.y,finish.width,finish.height);
//set the color to blue for p1
g.setColor(Color.BLUE);
//now draw the actual player
g.fill3DRect(p1.x,p1.y,p1.width,p1.height,true);
//set the color to red for p2
g.setColor(Color.RED);
//now draw the actual player
g.fill3DRect(p2.x,p2.y,p2.width,p2.height,true);
}
private class Move1 extends Thread implements KeyListener
{
public void run()
{
//add the code to make the KeyListener “wake up”
addKeyListener(this);
//now, this should all be in an infinite loop, so the process repeats while(true)
{
//now, put the code in a “try” block. This will let the program exit
//if there is an error.
try
{
//first, refresh the screen:
repaint();
//check to see if car hits the outside walls.
//If so, make it slow its speed by setting its speed
//to −4.
if(p1.intersects(left) || p1.intersects(right) ||
p1.intersects(top) || p1.intersects(bottom) ||
p1.intersects(obstacle) || p1.intersects(obstacle2)||
p1.intersects(p2) || p1.intersects(obstacle3) ||
p1.intersects(obstacle4) || p1.intersects(obstacle5))
{
p1Speed = −4;
}
//if the car hits the center, do the same as above Project 11: Radical Racing—Collision!
//but make the speed −2.5.
40
Project 11: Radical Racing—Collision!
if(p1.intersects(center))
{
p1Speed = −2.5;
}
//increase speed a bit
if(p1Speed<=5)
p1Speed+=.2;
//these will move the player based on direction if(p1Direction= =UP)
{
p1.y-=(int)p1Speed;
}
if(p1Direction= =DOWN)
{
p1.y+=(int)p1Speed;
}
if(p1Direction= =LEFT)
{
p1.x-=(int)p1Speed;
}
if(p1Direction= =RIGHT)
{
p1.x+=(int)p1Speed;
}
//this delays the refresh rate:
Thread.sleep(75);
}
catch(Exception e)
{
//if there is an exception (an error),
exit the loop.
break;
}
}
}
//you must also implement this method from KeyListener public void keyPressed(KeyEvent event)
{
}
//you must also implement this method from KeyListener public void keyReleased(KeyEvent event)
{
}
//you must also implement this method from KeyListener public void keyTyped(KeyEvent event)
{
if(event.getKeyChar()= =‘a’)
{
p1Direction = LEFT;
}
if(event.getKeyChar()= =‘s’)
{
p1Direction = DOWN;
}
if(event.getKeyChar()= =‘d’)
{
p1Direction = RIGHT;
41
}
if(event.getKeyChar()= =’w’)
{
p1Direction = UP;
}
}
}
private class Move2 extends Thread implements KeyListener
{
public void run()
{
//add the code to make the KeyListener “wake up”
addKeyListener(this);
//now, this should all be in an infinite loop, so the process repeats while(true)
{
//now, put the code in a “try” block. This will let the program exit
//if there is an error.
try
{
//first, refresh the screen:
repaint();
//check to see if car hits the outside walls.
//If so, make it slow its speed by setting its speed
//to −4.
if(p2.intersects(left) || p2.intersects(right) ||
p2.intersects(top) || p2.intersects(bottom) ||
p2.intersects(obstacle) || p2.intersects(obstacle2) ||
p1.intersects(p2))
{
p2Speed = −4;
}
//if the car hits the center, do the same as above
//but make the speed −2.5.
if(p2.intersects(center))
{
p2Speed = −2.5;
}
//increase speed a bit
if(p2Speed<=5)
p2Speed+=.2;
//these will move the player based on direction if(p2Direction= =UP)
{
p2.y−=(int)p2Speed;
}
if(p2Direction= =DOWN)
{
p2.y+=(int)p2Speed;
}
if(p2Direction= =LEFT)
{
p2.x-=(int)p2Speed;
}
if(p2Direction= =RIGHT)
{
p2.x
Project 11: Radical Racing—Collision!
+=(int)p2Speed;
42
Project 11: Radical Racing—Collision!
}
//this delays the refresh rate:
Thread.sleep(75);
}
catch(Exception e)
{
//if there is an exception (an error), exit the loop.
break;
}
}
}
//you must also implement this method from KeyListener public void keyPressed(KeyEvent event)
{
}
//you must also implement this method from KeyListener public void keyReleased(KeyEvent event)
{
}
//you must also implement this method from KeyListener public void keyTyped(KeyEvent event)
{
if(event.getKeyChar()= = ‘j’)
{
p2Direction = LEFT;
}
if(event.getKeyChar()= =‘k’)
{
p2Direction = DOWN;
}
if(event.getKeyChar()= =‘l’)
{
p2Direction = RIGHT;
}
if(event.getKeyChar()= =‘i’)
{
p2Direction = UP;
}
}
}
//this starts the program by calling the constructor: public static void main (String[] args)
{
new G1P3();
}
}
In Figures 11-2 through 11-4, the mobility
In Project 12, make the game come to life with of the cars and their collision detection are
bold graphics and sounds!
illustrated.
43

Figure 11-2
Cars are about to collide.
Figure 11-3
Cars move backwards after collision.
Project 11: Radical Racing—Collision!
44

Project 12: Radical Racing—Customizing
Figure 11-4
Cars turn and complete the track.
Project 12: Radical Racing—Customizing
Project
mode of transportation, save it to <directory of Java project>/build/classes. Figures 12-1
Add modifications to the game with images and
sounds. Create a “welcome” screen. Add a lap
tracking feature that announces the winner after three laps.
New Building Blocks
Images, Sound
Images
Want to change the graphics in your game? It’s not difficult. You can turn your racecar into a
spaceship, a boat, a plane, a cheetah, even a John Deere tractor ... anything that moves!
First, you have to draw the image yourself or
find it on the internet. Once you have chosen your Figure 12-1
Race car.
45

Figure 12-3
Airplane.
Figure 12-2
Boat.
through 12-3 represent some possible means of
URL eng = this.getClass().getResource
transportation that can be used in the game.
(“engine.wav”);
AudioClip snd = JApplet.newAudioClip(eng);
Add the following code before you draw the image: snd.loop();
“engine.wav” is the name of the sound file.
Image img = null;
try
“snd.loop()” will loop the sound file. If you
{
don’t want to loop it, you can replace that code URL url =
this.getClass().getResource (“name”);
with:
img =
Toolkit.getDefaultToolkit().getImage(url);
snd.play()
}
catch(Exception e){}
This will play the sound once.
“name” should be the name of the image you
Don’t forget to import java.applet.AudioClip;
want to use (including the extension).
The sounds used in the games in this book are
all available for free from www.mcgraw-hill.
Then, replace the code that draws the shapes
with the following:
g.drawImage(img, x, y, this);
Making the game
“x” and “y” should be the x and y from the
Rectangle.
Add a “welcome” screen using a JOptionPane.
One more thing — don’t forget to import the
You can also write code to keep track of laps by following:
checking the number of collisions with the
“finish” line.
import java.io.*;
import java.net.*;
Draw images to replace the plain, rectangular
All of the images used in the games in this book cars. Make sure you orient the image to the
are available for free from www.mcgraw-hill.com/
direction the racer is traveling (when it is
traveling right, the image should point to the right).
The completed code is below:
Sound
You can quickly add sound effects to your games with the following code:
Project 12: Radical Racing—Customizing
46
Project 12: Radical Racing—Customizing
//import everything:
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;
import java.applet.AudioClip;
//this creates the class where you use JFrame
public class G1P4 extends JFrame
{
//the following are all 8 images:
URL url1 = null, url2 = null, url3 = null, url4 = null, url5 = null, url6 = null, url7 = null, url8 = null; Image img1,img2,img3,img4,
img5,img6,img7,img8;
//the following URL and Image are for the center title URL URLt = null;
Image title = null;
//this is the constand that will hold the screen size final int WIDTH = 900, HEIGHT = 650;
//this will be true if someone already won
boolean winnerChosen = false;
//these will keep track of each player’s speed: double p1Speed =.5, p2Speed =.5;
//this will keep track of how may laps a player has run int p1Laps = 0, p2Laps = 0;
//these are ints that represent directions:
final int UP = 0, RIGHT = 1, DOWN = 2, LEFT = 3;
//these will keep track of the player’s directions (default = up) int p1Direction = UP;
int p2Direction = UP;
//create rectangles that will represent the left, right, top, bottom, and center Rectangle left = new Rectangle(0,0,WIDTH/9,HEIGHT); Rectangle right = new Rectangle((WIDTH/9)*8,0,WIDTH/9,HEIGHT); Rectangle top = new Rectangle(0,0,WIDTH,HEIGHT/9); Rectangle bottom = new Rectangle(0,(HEIGHT/9)*8,WIDTH,HEIGHT/9); Rectangle center = new Rectangle((int)((WIDTH/9)*2.5),(int)((HEIGHT/9)*2.5), (int) ((WIDTH/9)*5),(HEIGHT/9)*4);
//these obstacles will obstruct the path and make navigating harder Rectangle obstacle = new Rectangle(WIDTH/2,(int)((HEIGHT/9)*7),WIDTH/10,HEIGHT/9); Rectangle obstacle2 = new Rectangle(WIDTH/3,(int)((HEIGHT/9)*5),WIDTH/10,HEIGHT/4); Rectangle obstacle3 = new Rectangle(2*(WIDTH/3),(int)((HEIGHT/9)*5),WIDTH/10,HEIGHT/4); Rectangle obstacle4 = new Rectangle(WIDTH/3,HEIGHT/9,WIDTH/30,HEIGHT/9); Rectangle obstacle5 = new Rectangle(WIDTH/2,(int)((HEIGHT/9)*1.5),WIDTH/30,HEIGHT/4);
//the following rectangle is the finish line for both players Rectangle finish = new Rectangle(WIDTH/9,(HEIGHT/2)−HEIGHT/9, (int)((WIDTH/9)*1.5), HEIGHT/70);
//this is the rectangle for player 1’s (outer) car: Rectangle p1 = new Rectangle(WIDTH/9,HEIGHT/2,WIDTH/30,WIDTH/30);
//this is the rectangle for player 2’s (inner) car: Rectangle p2 = new
Rectangle(((WIDTH/9)+((int)((WIDTH/9)*1.5)/2)),(HEIGHT/2)+(HEIGHT/10),WIDTH/3
0,WIDTH/30);
//the constructor:
public G1P4()
{
47
//the following code creates the JFrame
super(“Radical Racing”);
setSize(WIDTH,HEIGHT);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); setVisible(true);
//load the URLs
try
{
url1 = this.getClass().getResource(“G1P4Img1.jpg”); url2 = this.getClass().getResource(“G1P4Img2.jpg”); url3 = this.getClass().getResource(“G1P4Img3.jpg”); url4 = this.getClass().getResource(“G1P4Img4.jpg”); url5 = this.getClass().getResource(“G1P4Img5.jpg”); url6 = this.getClass().getResource(“G1P4Img6.jpg”); url7 = this.getClass().getResource(“G1P4Img7.jpg”); url8 = this.getClass().getResource(“G1P4Img8.jpg”); URLt = this.getClass().getResource(“title.png”);
}
catch(Exception e){}
//attach the URLs to the images
img1 = Toolkit.getDefaultToolkit().getImage(url1); img2 = Toolkit.getDefaultToolkit().getImage(url2); img3 = Toolkit.getDefaultToolkit().getImage(url3); img4 = Toolkit.getDefaultToolkit().getImage(url4); img5 = Toolkit.getDefaultToolkit().getImage(url5); img6 = Toolkit.getDefaultToolkit().getImage(url6); img7 = Toolkit.getDefaultToolkit().getImage(url7); img8 = Toolkit.getDefaultToolkit().getImage(url8); title = Toolkit.getDefaultToolkit().getImage(URLt);
//display a welcome dialog (JOptionPane) that includes the rules JOptionPane.showMessageDialog(null,“WELCOME TO RADICAL RACING!\n\n”+“Game: 2 player racing\n”+“Goal: Complete 3 full laps before your opponent!\n”+“Controls:\n”+“Player1:\n”+“(BLUE CAR) WASD directional, speed is automatic\n”+“ Player 2:\n”+“ (RED CAR) IJKL directional, speed is automatic\n”+“Also, be sure to avoid the green grass. It’s slick\n”+“and might make you spin out!\n\n”+“Click OK to start”);
//start the inner class (which works on its own, because it is a Thread) Move1 m1 = new Move1();
Move2 m2 = new Move2();
m1.start();
m2.start();
//now, play the sound:
try
{
URL eng = this.getClass().getResource (“engine.wav”); AudioClip snd = JApplet.newAudioClip(eng);
snd.loop();
}
catch(Exception e){}
}
//this will draw the cars and the race track
public void paint(Graphics g)
{
super.paint(g);
//draw the background for the racetrack
g.setColor(Color.DARK_GRAY);
Project 12: Radical Racing—Customizing
g.fillRect(0,0,WIDTH,HEIGHT);
48
Project 12: Radical Racing—Customizing
//when we draw, the border will be green
g.setColor(Color.GREEN);
//the following rectangle is the start line for the outer player Rectangle lineO = new Rectangle(WIDTH/9, HEIGHT/2,(int)((WIDTH/9)*1.5)/2,HEIGHT/140);
//the following rectangle is the start line for the inner player Rectangle lineI = new Rectangle(((WIDTH/9)+
((int)((WIDTH/9)*1.5)/2)),(HEIGHT/2)+(HEIGHT/10),(int)((WIDTH/9)*1.5)/2, HEIGHT/140);
//now, using the rectangles, draw it
g.fillRect(left.x,left.y,left.width,left.height); g.fillRect(right.x,right.y,right.width,right.height); g.fillRect(top.x,top.y,top.width,top.height);
g.fillRect(bottom.x,bottom.y,bottom.width, bottom.height); g.fillRect(center.x,center.y,center.width,center.height); g.fillRect(obstacle.x,obstacle.y,obstacle.width,obstacle.height); g.fillRect(obstacle2.x,obstacle2.y,obstacle2.width,obstacle2.height); g.fillRect(obstacle3.x,obstacle3.y,obstacle3.width,obstacle3.height); g.fillRect(obstacle4.x,obstacle4.y,obstacle3.width,obstacle4.height); g.fillRect(obstacle5.x,obstacle5.y,obstacle5.width,obstacle5.height);
//set the starting line color to white
g.setColor(Color.WHITE);
//now draw the starting line
g.fillRect(lineO.x,lineO.y,lineO.width,lineO.height); g.fillRect(lineI.x,lineI.y,lineI.width,lineI.height);
//set the color of the finish line to yellow
g.setColor(Color.YELLOW);
//now draw the finish line
g.fillRect(finish.x,finish.y,finish.width,finish.height);
//this code will draw the title image to the center of the screen: g.drawImage(title,center.x+10,center.y+80,this);
//draw the images for p1
if(p1Direction= =UP)
g.drawImage(img5,p1.x,p1.y,this);
if(p1Direction= =LEFT)
g.drawImage(img8,p1.x,p1.y,this);
if(p1Direction= =DOWN)
g.drawImage(img7,p1.x,p1.y,this);
if(p1Direction= =RIGHT)
g.drawImage(img6,p1.x,p1.y,this);
//draw the images for p2
if(p2Direction= =UP)
g.drawImage(img1,p2.x,p2.y,this);
if(p2Direction= =LEFT)
g.drawImage(img4,p2.x,p2.y,this);
if(p2Direction= =DOWN)
g.drawImage(img3,p2.x,p2.y,this);
if(p2Direction= =RIGHT)
g.drawImage(img2,p2.x,p2.y,this);
}
private class Move1 extends Thread implements KeyListener
{
public void run()
{
//add the code to make the KeyListener “wake up”
addKeyListener(this);
//now, this should all be in an infinite loop, so the process repeats while(true)
{
49
//now, put the code in a “try” block. This will let the program exit
//if there is an error.
try
{
//first, refresh the screen:
repaint();
//check to see if car hits the outside walls.
//If so, make it slow its speed by setting its speed
//to −4.
if(p1.intersects(left) || p1.intersects(right) || p1.intersects(top) ||
p1.intersects(bottom) || p1.intersects(obstacle) ||
p1.intersects(obstacle2)|| p1.intersects(p2) || p1.intersects (obstacle3) ||
p1.intersects(obstacle4) || p1.intersects(obstacle5))
{
p1Speed = −4;
}
//if the car hits the center, do the same as above
//but make the speed −2.5.
if(p1.intersects(center))
{
p1Speed = −2.5;
}
//check how many laps:
if(p1.intersects(finish)&&p1Direction= =UP)
{
p1Laps+ +;
}
//3 full laps will occur when laps is about 24.
//so, use an if statement to check it and tell the user.
//also, if winnerChosen is false, tell them they won and set it
//to true. Otherwise, tell the user they lost.
if(p1Laps>=24)
{
if(!winnerChosen)
{
winnerChosen = true;JOptionPane.showMessageDialog(null, “Player 1 (blue) Wins!!!”);
break;
}
else
{
JOptionPane.showMessageDialog(null, “Player 1 (blue): LOSER!:(\n” + “Player 2
(red): WINNER!!!:D”);
break;
}
}
//increase speed a bit
if(p1Speed<=5)
p1Speed+=.2;
//these will move the player based on direction if(p1Direction= =UP)
{
p1.y−=(int)p1Speed;
}
if(p1Direction= =DOWN)
{
p1.y+=(int)p1Speed;
Project 12: Radical Racing—Customizing
}
50
Project 12: Radical Racing—Customizing
if(p1Direction= =LEFT)
{
p1.x−=(int)p1Speed;
}
if(p1Direction= =RIGHT)
{
p1.x+=(int)p1Speed;
}
//this delays the refresh rate:
Thread.sleep(75);
}
catch(Exception e)
{
//if there is an exception (an error), exit the loop.
break;
}
}
}
//you must also implement this method from KeyListener public void keyPressed(KeyEvent event)
{
}
//you must also implement this method from KeyListener public void keyReleased(KeyEvent event)
{
}
//you must also implement this method from KeyListener public void keyTyped(KeyEvent event)
{
if(event.getKeyChar()= =‘a’)
{
p1Direction = LEFT;
}
if(event.getKeyChar()= =‘s’)
{
p1Direction = DOWN;
}
if(event.getKeyChar()= =‘d’)
{
p1Direction = RIGHT;
}
if(event.getKeyChar()= =‘w’)
{
p1Direction = UP;
}
}
}
private class Move2 extends Thread implements KeyListener
{
public void run()
{
//add the code to make the KeyListener “wake up”
addKeyListener(this);
//now, this should all be in an infinite loop, so the process repeats while(true)
{
//now, put the code in a “try” block. This will let the program exit
//if there is an error.
51
try
{
//first, refresh the screen:
repaint();
//check to see if car hits the outside walls.
//If so, make it slow its speed by setting its speed
//to −4.
if(p2.intersects(left) || p2.intersects(right) ||
p2.intersects(top) || p2.intersects(bottom) ||
p2.intersects(obstacle) ||p2.intersects(obstacle2) ||
p1.intersects(p2) || p1.intersects(obstacle3) ||
p1.intersects(obstacle4) || p1.intersects(obstacle5))
{
p2Speed = −4;
}
//if the car hits the center, do the same as above
//but make the speed −2.5.
if(p2.intersects(center))
{
p2Speed = −2.5;
}
//check how many laps:
if(p2.intersects(finish)&&p2Direction= =UP)
{
p2Laps+ +;
}
//3 full laps will occur when laps is about 24.
//so, use an if statement to check it and tell the user.
//also, if winnerChosen is false, tell them they won and set it
//to true. Otherwise, tell the user they lost.
if(p2Laps>=24)
{
if(!winnerChosen)
{
winnerChosen = true;
JOptionPane.showMessageDialog(null, “Player 2 (red) Wins!!!”); break;
}
else
{
JOptionPane.showMessageDialog(null,
“Player 2 (red): LOSER!:(\n” +
“Player 1 (blue): WINNER!!!:D”);
break;
}
}
//increase speed a bit
if(p2Speed<=5)
p2Speed+=.2;
//these will move the player based on direction if(p2Direction= =UP)
{
p2.y−=(int)p2Speed;
}
if(p2Direction= =DOWN)
{
p2.y+=(int)p2Speed;
}
Project 12: Radical Racing—Customizing
if(p2Direction= =LEFT)
52
Project 12: Radical Racing—Customizing
{
p2.x-=(int)p2Speed;
}
if(p2Direction= =RIGHT)
{
p2.x+=(int)p2Speed;
}
//this delays the refresh rate:
Thread.sleep(75);
}
catch(Exception e)
{
//if there is an exception (an error), exit the loop.
break;
}
}
}
//you must also implement this method from KeyListener public void keyPressed(KeyEvent event)
{
}
//you must also implement this method from KeyListener public void keyReleased(KeyEvent event)
{
}
//you must also implement this method from KeyListener public void keyTyped(KeyEvent event)
{
if(event.getKeyChar()= =‘j’)
{
p2Direction = LEFT;
}
if(event.getKeyChar()= =‘k’)
{
p2Direction = DOWN;
}
if(event.getKeyChar()= =‘l’)
{
p2Direction = RIGHT;
}
if(event.getKeyChar()= =‘i’)
{
p2Direction = UP;
}
}
}
//this starts the program by calling the constructor: public static void main (String[] args)
{
new G1P4();
}
}
53

Figures 12-4 through 12-6 depict the game with Experiment with different sound effects/music.
the new graphics.
Change the rules—give one player a head start
while increasing the other racer’s speed.
Customizing the game
Add a slow-motion section to the track.
Add more cars so more people can play.
Make your own track—make it round, make it
square, whatever you want!
Shape-shift: have the racers change vehicles
Add more detail/colors to both racers and the track.
after each lap.
Program hidden obstacles (potholes) in the
Reverse world: race backwards (change which
middle of the track.
keys do what).
Figure 12-4
Welcome screen.
Project 12: Radical Racing—Customizing Figure 12-5 Cars are ready to race!
54

Project 13: Screen Skier—The Slope
Figure 12-6
Blue car wins!
Project 13: Screen Skier—The Slope
computer to see where the user is clicking. In KeyListener, you had to add three methods,
Screen skier
whether or not you used all of them. You must do the same with MouseListener, except there are five It’s a slippery slope as you have exactly 45 seconds methods. They are:
to ski down the mountain on a course you create.
Fail and die or win and grab the glory!
public void mouseClicked(MouseEvent e){}
public void mouseEntered(MouseEvent e){}
public void mouseExited(MouseEvent e){}
Project
public void mousePressed(MouseEvent e){}
public void mouseReleased(MouseEvent e){}
In this project, you will create the slope-drawing In Screen Skier, you will use only the last two.
environment: is it a smooth and gentle slope, a For “mousePressed,” you will see where the
sheer drop, or a bumpy terrain of boulders and player first pressed the mouse (the first point on trees? You decide!
the slope). You will then use “mouseReleased” to see where the player ended the track.
New building blocks
Of course, the methods are useless if you
don’t know how to see the coordinates of the
MouseListener, Premade Classes
player’s click.
Here’s how:
MouseListener
To get the x coordinate, use the following code: You already know how to program the computer to e.getX();
see what the player is typing. Now, you can get the 55

To get the y coordinate, use this code:
labeled “Constructor Summary.” This will tell
you how to create the class. For a Point2D.Double, e.getY();
it says to pass in two doubles: the x and y
coordinates. Therefore, by using the
Premade classes
“mousePressed” method, you can get the first
point of the line by creating a Point2D.Double.
Java has hundreds of premade classes you can use.
You can then create a line in the “mouseReleased”
A complete list of the classes and their
method using your previous point and the point descriptions is called the Java API. It is located where the user released the mouse. You can add
here: http://java.sun.com/j2se/1.5.0/docs/api/
this line to an ArrayList.
One premade class you will use in Screen Skier If you want to know what methods you
holds the information for a single line. The class is can use with a given class, go to NetBeans and called Line2D.Double. Another class that holds a create a new instance of the class. For example, single point (the first part of the line) is called with the class Point2D.Double, do the following: Point2D.Double.
Point2D.Double pnt = new Point2D.Double
If you look in the API, it will tell you what you (23.5,563.0);
must import. In addition, you will see a table Project 13: Screen Skier—The Slope Figure 13-1 Pop-up box in NetBeans.
56
Project 13: Screen Skier—The Slope
Then, type the following:
Making the game
pnt.
When you type the period, NetBeans will create It’s time to create the first part of Screen Skier: the a list of all the methods you can use. Most are slope drawing environment. Use a mouseListener self-explanatory, but for the more complex
and Point2D.Double and Line2D.Double to draw
methods, NetBeans will make a description pop-
the ski slope. Store the lines in an ArrayList and up, as shown in Figure 13-1.
use a “for loop” to print all of the lines in the ArrayList from the paint method.
//import everything:
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;
import java.util.*;
//the actual class:
public class G2P1 extends JFrame implements MouseListener
{
//this ArrayList holds the lines:
ArrayList lines = new ArrayList();
//this will hold the first point of the line
Point2D.Double holder;
//the constructor:
public G2P1()
{
//set the title:
super(“Screen Skier — Programming Video Games for the Evil Genius”); setSize(700,700);
setVisible(true);
setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE); addMouseListener(this);
}
public void paint(Graphics g)
{
super.paint(g);
//set the color to black (for the lines):
g.setColor(Color.black);
//this for loop will go thru every line in the ArrayList and draw them: for(int i = 0; i <lines.size(); i+ +)
{
//get the line in the ArrayList:
Line2D.Double temp = (Line2D.Double) lines.get(i);
//now get all the x’s and y’s
int x1 = Integer.parseInt(“”+Math.round (temp.getX1())); int y1 = Integer.parseInt(“”+Math.round (temp.getY1())); int x2 = Integer.parseInt(“”+Math.round (temp.getX2())); int y2 = Integer.parseInt(“”+Math.round (temp.getY2())); g.drawLine(x1,y1,x2,y2);
}
}
//these are the mouse listener methods:
57

public void mouseClicked(MouseEvent e){}
//these are the mouse listener methods:
public void mouseEntered(MouseEvent e){}
//these are the mouse listener methods:
public void mouseExited(MouseEvent e){}
//these are the mouse listener methods:
public void mousePressed(MouseEvent e)
{
//this code will run when the mouse is first pressed, getting the
//starting point of the line.
holder = new Point2D.Double(e.getX(),e.getY());
}
//these are the mouse listener methods:
public void mouseReleased(MouseEvent e)
{
//this code will run when the mouse is released, completing the
//line and adding it to the ArrayList.
Point2D.Double end = new Point2D.Double(e.getX(),e.getY()); lines.add(new Line2D.Double(holder,end));
//now, repinat the screen so the line is drawn: repaint();
}
public static void main (String[] args)
{
//begin the program:
new G2P1();
}
}
Project 13: Screen Skier—The Slope Figure 13-2 Blank canvas.
58

Project 13: Screen Skier—The Slope
Figures 13-2 through 13-4 depict the line
Let your mind go wild! In the next project,
drawing capabilities of Screen Skier.
create any kind of skier you want to glide down slopes of your design.
Figure 13-3
Single line.
Figure 13-4
Many lines connect to create the track.
59

Project 14: Screen Skier—Practice Run
Project
Create a figure to ski down the track the player has drawn.
Making the game
Start by generating the image and the Rectangle that will represent the skier.
To have the skier race down the slope, initialize a Thread that controls the player’s movements.
Inside the Thread, make a method that sets up the Figure 14-1
Starting position.
skier’s starting position (a bit to the right and above the first point of the first line), as shown in If the skier is not on the line, slowly increase Figure 14-1.
“gravity.” If the skier is on the line, find the difference between the two points of the line and Call this method from the run method before the divide by 50 for the y axis and 100 for the x axis.
while loop. In addition, create another method Add this to the respective variables, “gravity” and that takes in a boolean as its argument that can end
“velocity.” Then, apply these variables to the the while loop. Inside the while loop, check to skier’s x and y position. Don’t forget to repaint and see if the skier’s Rectangle intersects any of the delay before iterating through the loop again.
lines (use the “intersects” method).
Outside the Thread, use the KeyListener to
In order to control the skier’s x and y
see if ‘p’ (for “play”) or ‘q’ (for “quit”) is pressed.
movements, create two global doubles called
If ‘p’ is pressed, begin the loop. If ‘q’ is pressed,
“velocity” and “gravity” (discussed in Section 1).
end the loop.
//import everything:
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;
import java.util.*;
import java.io.*;
import java.net.*;
//the actual class:
public class G2P2 extends JFrame implements MouseListener, KeyListener
{
//this ArrayList holds the lines:
Project 14: Screen Skier—Practice Run
ArrayList lines = new ArrayList();
60
Project 14: Screen Skier—Practice Run
//this will hold the first point of the line
Point2D.Double holder;
//this is the Thread:
Move move;
//this will hold the character’s information:
Rectangle guy = null;
//this will tell repaint whether or not to draw the guy: boolean drawGuy = false;
//the constructor:
public G2P2()
{
//set the title:
super(“Screen Skier − Programming Video Games for the Evil Genius”); setSize(700,700);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); addMouseListener(this);
addKeyListener(this);
}
public void paint(Graphics g)
{
super.paint(g);
//set the color to black (for the lines):
g.setColor(Color.black);
//this for loop will go thru every line in the ArrayList and draw them: for(int i = 0; i <lines.size(); i+ +)
{
//get the line in the ArrayList:
Line2D.Double temp = (Line2D.Double) lines.get(i);
//now get all the x’s and y’s
int x1 = Integer.parseInt(“”+Math.round (temp.getX1())); int y1 = Integer.parseInt(“”+Math.round (temp.getY1())); int x2 = Integer.parseInt(“”+Math.round (temp.getX2())); int y2 = Integer.parseInt (“”+Math.round(temp.getY2())); g.drawLine(x1,y1,x2,y2);
}
if(drawGuy)
{
try
{
//draw the guy:
URL url = this.getClass().getResource (“guy.png”); Image img = Toolkit.getDefaultToolkit().getImage(url); g.drawImage(img, guy.x, guy.y, this);
}
catch(Exception e){}
}
}
//these are the mouse listener methods:
public void mouseClicked(MouseEvent e){}
//these are the mouse listener methods:
public void mouseEntered(MouseEvent e){}
61
//these are the mouse listener methods:
public void mouseExited(MouseEvent e){}
//these are the mouse listener methods:
public void mousePressed(MouseEvent e)
{
//this code will run when the mouse is first pressed, getting the
//starting point of the line.
holder = new Point2D.Double(e.getX(),e.getY());
}
//these are the mouse listener methods:
public void mouseReleased(MouseEvent e)
{
//this code will run when the mouse is released, completing the
//line and adding it to the ArrayList.
Point2D.Double end = new Point2D.Double(e.getX(),e.getY()); lines.add(new Line2D.Double(holder,end));
//now, repinat the screen so the line is drawn: repaint();
}
//these are the key listener methods:
public void keyPressed(KeyEvent e){}
//these are the key listener methods:
public void keyReleased(KeyEvent e){}
//these are the key listener methods:
public void keyTyped(KeyEvent e)
{
//if the user presses “p” OR “P,” start the Thread if(e.getKeyChar()= =‘p’ || e.getKeyChar()= =‘P’)
{
//init the Thread:
move = new Move();
move.start();
move.action(true);
}
//if the user presses “q” OR “Q,” stop the Thread if(e.getKeyChar()= =‘q’ || e.getKeyChar()= =‘Q’)
{
move.action(false);
drawGuy = false;
move = null;
}
}
//this is the thread that will make the character move private class Move extends Thread
{
//these variables will hold the player’s speed and gravity double velocity;
double gravity;
//stops/starts the thread:
boolean go = false;
public void run()
{
if(go)
{
Project 14: Screen Skier—Practice Run
initGuy();
62
Project 14: Screen Skier—Practice Run
velocity = 0;
gravity = 1;
}
while(go)
{
try
{
//this will hold the line the guy is on (null if none) Line2D.Double lineTaken = null;
//this will say whether the character is even on a line boolean onLine = false;
//gravity needs to be reset when the guy first lands on
//the line. This will hold that info. It holds the line #
int firstOnLine = −1;
//check if he is on a line:
for(int i = lines.size()−1; i>=0; i− −)
{
//get the line:
Line2D.Double temp = (Line2D.Double) lines.get(i); if(temp.intersects(guy.x,guy.y,30,30))
{
lineTaken = temp;
onLine = true;
if(firstOnLine!=i)
{
firstOnLine = i;
gravity = 0;
}
break;
}
}
//if there is a line it is on ...
if(onLine)
{
//now, get the new gravity by subtracting the y’s and
//dividing by 20
double mGrav = (lineTaken.y2−line Taken.y1)/50;
//now, get the new velocity by subtracting the x’s and
//dividing by 20
double mVel = (lineTaken.x2−line Taken.x1)/100;
//set the maximum values
if(velocity<5)
velocity+=mVel;
if(gravity<2.5)
gravity+=mGrav;
}
else
{
gravity+=.2;
}
//alter the guy’s movements:
guy.x += velocity;
guy.y += gravity;
//delay before repainting:
Thread.sleep(75);
//repaint:
repaint();
63

}
catch(Exception e){ break; }
}
}
public void action(boolean a)
{
//stops the thread:
go = a;
}
public void initGuy()
{
/*
* This code will set up the character’s position
*/
//get the first line
Line2D.Double firstLine = (Line2D.Double) lines.get(0);
//get the first “x” and “y” of that line:
int x = Integer.parseInt(“”+Math.round (firstLine.x1)); int y = Integer.parseInt(“”+Math.round (firstLine.y1)); guy = new Rectangle(x+30,y−20,30,30);
drawGuy = true;
}
}
public static void main (String[] args)
{
//begin the program:
new G2P2();
}
}
Project 14: Screen Skier—Practice Run Figure 14-2 Slope comes to life.
64

Project 14: Screen Skier—Practice Run
Figure 14-3
Skiing.
Figure 14-4
More skiing.
65

Figure 14-5
Ouch! Skier falls off the end of the track.
Figures 14-2 through 14-5 depict the steps of
Want to make the game more realistic? Go on to drawing a track and letting the skier glide down the next project to learn how to make impressive the slope.
graphics.
Project 15: Screen Skier—Expert Slope
Project
Then, add this image to the program. In addition, add a 5000 by 5000 white square behind the image Create a bigger drawing environment with
(using fillRect). This will make the game appear different perspectives.
realistic if the skier goes beyond the background image, as demonstrated in Figure 15-1.
Making the game
Now, expand the drawing environment. First,
make two variables—one called “focusX” and the First, let’s add the graphics. Start by making a other called “focusY.” Set them to zero. Base
Project 15: Screen Skier—Expert Slope 1400 by 1400 pixel image to use as a background.
everything off of these variables. For example, 66

Project 15: Screen Skier—Expert Slope
Figure 15-1
Background—before and after.
when you get the x coordinate of a click, use the
“guy.y−100,” respectively. This will make the
following:
screen follow the skier. You can also add
e.getX()+focusX
keyListeners to alter focusX and focusY by 100
When you draw the skier (in the paint method), pixels so that the player can move the focus around change focusX and focusY to “guy.x−100” and
when creating the ski slope.
//import everything:
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;
import java.util.*;
import java.io.*;
import java.net.*;
//the actual class:
public class G2P3 extends JFrame implements MouseListener, KeyListener
{
//this ArrayList holds the lines:
ArrayList lines = new ArrayList();
//this will hold the first point of the line
Point2D.Double holder;
//this is the Thread:
Move move;
67
//this will hold the character’s information:
Rectangle guy = null;
//this will tell repaint whether or not to draw the guy: boolean drawGuy = false;
//this will make the screen focus on the guy:
int focusX = 0;
int focusY = 0;
//the constructor:
public G2P3()
{
//set the title:
super(“Screen Skier - Programming Video Games for the Evil Genius”); setSize(700,700);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); addMouseListener(this);
addKeyListener(this);
}
public void paint(Graphics g)
{
super.paint(g);
//draw the background:
try
{
//this is the general, plain white background: g.setColor(Color.white);
g.fillRect(−2000,−2000,5000,5000);
//this is the image background
URL url = this.getClass().getResource (“bg.png”); Image img = Toolkit.getDefaultToolkit(). getImage(url); g.drawImage(img, 0−focusX, 0−focusY, this);
}
catch(Exception e){}
//set the color to black (for the lines):
g.setColor(Color.black);
//this for loop will go tru every line in the ArrayList and draw them: for(int i = 0; i <lines.size(); i+ +)
{
//get the line in the ArrayList:
Line2D.Double temp = (Line2D.Double) lines.get(i);
//now get all the x’s and y’s
int x1 = Integer.parseInt(“”+Math.round(temp.getX1())); int y1 = Integer.parseInt(“”+Math.round (temp.getY1())); int x2 = Integer.parseInt(“”+Math.round (temp.getX2())); int y2 = Integer.parseInt(“”+Math.round (temp.getY2())); g.drawLine(x1−focusX,y1−focusY,x2−focusX,y2−focusY);
}
if(drawGuy)
{
try
{
//draw the guy:
URL url = this.getClass().getResource (“guy.png”); Image img = Toolkit.getDefaultToolkit(). getImage(url); Project 15: Screen Skier—Expert Slope
g.drawImage(img, guy.x−focusX, guy.y−focusY, this); 68
Project 15: Screen Skier—Expert Slope
}
catch(Exception e){}
//reset the focus to the guy’s position
focusX = guy.x−100;
focusY = guy.y−100;
}
}
//these are the mouse listener methods:
public void mouseClicked(MouseEvent e){}
//these are the mouse listener methods:
public void mouseEntered(MouseEvent e){}
//these are the mouse listener methods:
public void mouseExited(MouseEvent e){}
//these are the mouse listener methods:
public void mousePressed(MouseEvent e)
{
//this code will run when the mouse is first pressed, getting the
//starting point of the line.
holder = new Point2D.Double(e.getX()+ focusX,e.getY()+focusY);
}
//these are the mouse listener methods:
public void mouseReleased(MouseEvent e)
{
//this code will run when the mouse is released, completing the
//line and adding it to the ArrayList.
Point2D.Double end = new Point2D.Double(e.get X()+focusX, e.getY()+focusY); lines.add(new Line2D.Double(holder,end));
//now, repinat the screen so the line is drawn: repaint();
}
//these are the key listener methods:
public void keyPressed(KeyEvent e){}
//these are the key listener methods:
public void keyReleased(KeyEvent e){}
//these are the key listener methods:
public void keyTyped(KeyEvent e)
{
//if the user presses “p” OR “P,” start the Thread if(e.getKeyChar()= =‘p’ || e.getKeyChar()= =‘P’)
{
//init the Thread:
move = new Move();
move.start();
move.action(true);
}
//if the user presses “q” OR “Q,” stop the Thread if(e.getKeyChar()= =‘q’ || e.getKeyChar()= =‘Q’)
{
move.action(false);
drawGuy = false;
focusX = 0;
focusY = 0;
move = null;
}
//if the user presses “a” OR “A,” move the focus 69
if(e.getKeyChar()= =‘a’ || e.getKeyChar()= =‘A’)
{
focusX−=100;
repaint();
}
//if the user presses “s” OR “S,” move the focus if(e.getKeyChar()= =‘s’ || e.getKeyChar()= =‘S’)
{
focusY+=100;
repaint();
}
//if the user presses “w” OR “W,” move the focus if(e.getKeyChar()= =‘w’ || e.getKeyChar()= =‘W’)
{
focusY−=100;
repaint();
}
//if the user presses “d” OR “D,” move the focus if(e.getKeyChar()= =‘d’ || e.getKeyChar()= =‘D’)
{
focusX+=100;
repaint();
}
}
//this is the thread that will make the character move private class Move extends Thread
{
//these variables will hold the player’s speed and gravity double velocity;
double gravity;
//stops/starts the thread:
boolean go = false;
public void run()
{
if(go)
{
initGuy();
velocity = 0;
gravity = 1;
}
while(go)
{
try
{
//this will hold the line the guy is on (null if none) Line2D.Double lineTaken = null;
//this will say whether the character is even on a line boolean onLine = false;
//gravity needs to be reset when the guy first lands on
//the line. This will hold that info. It holds the line #
int firstOnLine = −1;
//check if he is on a line:
for(int i = lines.size()−1; i>=0; i− −)
{
//get the line:
Line2D.Double temp = (Line2D.Double) lines.get(i); Project 15: Screen Skier—Expert Slope
if(temp.intersects(guy.x,guy.y,30,30))
70
Project 15: Screen Skier—Expert Slope
{
lineTaken = temp;
onLine = true;
if(firstOnLine!=i)
{
firstOnLine = i;
gravity = 0;
}
break;
}
}
//if there is a line it is on ...
if(onLine)
{
//now, get the new gravity by subtracting the y’s and
//dividing by 20
double mGrav = (lineTaken.y2−lineTaken.y1)/50;
//now, get the new velocity by subtracting the x’s and
//dividing by 20
double mVel = (lineTaken.x2−lineTaken.x1)/100;
//set the maximum values
if(velocity<5)
velocity+=mVel;
if(gravity<2.5)
gravity+=mGrav;
}
else
{
gravity+=.2;
}
//alter the guy’s movements:
guy.x += velocity;
guy.y += gravity;
//delay before repainting:
Thread.sleep(75);
//repaint:
repaint();
}
catch(Exception e){ break; }
}
}
public void action(boolean a)
{
//stops the thread:
go = a;
}
public void initGuy()
{
/*
* This code will set up the character’s position
*/
//get the first line
Line2D.Double firstLine = (Line2D.Double) lines.get(0);
//get the first “x” and “y” of that line:
int x = Integer.parseInt(“”+Math.round(firstLine.x1)); int y = Integer.parseInt(“”+Math.round(firstLine.y1)); 71

guy = new Rectangle(x+30,y−20,30,30);
drawGuy = true;
}
}
public static void main (String[] args)
{
//begin the program:
new G2P3();
}
}
Figures 15-2 through 15-6 depict the game play With editing tools, you can make endless
of Screen Skier.
variations: add more track, undo the last piece of slope, or even bulldoze everything and start again.
Project 15: Screen Skier—Expert Slope Figure 15-2 Slope is created.
72

Project 15: Screen Skier—Expert Slope
Figure 15-3
Screen moves to expand the slope.
Figure 15-4
Skier journeys down the slope.
73

Figure 15-5
Skier continues downhill.
Project 15: Screen Skier—Expert Slope Figure 15-6 Skier ventures uphill.
74

Project 16: Screen Skier—Bulldozer
Project 16: Screen Skier—Bulldozer
Project
Change the course: delete it, add to it ... make it extreme!
Making the game
To allow the player to delete his/her last line, Figure 16-1
“confirmDialog” box.
create a new keyEvent for “z” (because “Crtl+z” is undo). When the user presses “z,” execute the
following code:
Warning: if the user accidentally presses “x,”
lines.remove(lines.size()−1);
hours of hard work will be deleted! Prevent this
“lines.remove” deletes the variable inside of the distaster by using a JOptionPane, which will
parentheses at the given element position. Because provide a safety net. Use the following code:
you are giving it the position of “lines.size()-
1,” the computer will remove the last line
int answer = JOptionPane.showConfirmDialog
(null, “Delete?”);
(remember lines.size returns the size of the
ArrayList, not the last element!).
A ConfirmDialog box is displayed in Figure 16-1.
To let the user clear the entire track, create a The variable “answer” represents one of the
keyEvent for “x.” To clear the entire ArrayList, use three options. Use the following code inside an if-the following code:
statement to check if the user pressed “OK.” Ways lines.clear();
to check for other responses can be found in the API.
answer= =JOptionPane.OK_OPTION
//import everything:
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;
import java.util.*;
import java.io.*;
import java.net.*;
import java.applet.AudioClip;
//the actual class:
public class G2P4 extends JFrame implements MouseListener, KeyListener
{
//this ArrayList holds the lines:
ArrayList lines = new ArrayList();
//this will hold the first point of the line
Point2D.Double holder;
//these are the Threads:
Move move;
75
Counter cnt;
//this will hold the character’s information:
Rectangle guy = null;
//this will tell repaint whether or not to draw the guy: boolean drawGuy = false;
//this will hold the seconds the skier has been skiing int counter = 0;
//this will make the screen focus on the guy:
int focusX = 0;
int focusY = 0;
//if the guys hits the bottom, change the icon with this boolean boolean alive = true;
//true if the sound has been played
boolean sndPlayed = false;
//the current time:
int count = 0;
//this holds the final time
int holdTime = 0;
//this says whether or not to use the “hold” value boolean useHold = false;
//the constructor:
public G2P4()
{
//set the title:
super(“Screen Skier — Programming Video Games for the Evil Genius”); setSize(700,700);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); JOptionPane.showMessageDialog(null,
“SCREEN SKIER\n\n” +
“Create your own ski run! Simply\n” +
“click and drag the mouse to create\n” +
“a track. Press ‘p’ to start the\n” +
“run and ‘q’ to end it. To create\n” +
“a larger track, use the WASD keys\n” +
“to move the focus of the screen.\n” +
“All uphill slopes become ski lifts.\n” +
“If you make them too steep, however,\n” +
“they may collapse! Also, if you try\n” +
“to even the track out from a large\n” +
“decline, the skier may fall through\n” +
“the track into the snow! Also, if you\n” +
“made a mistake designing your track,\n” +
“you can erase it by pressing ‘x’.\n” +
“You can also undo the last line by\n” +
“pressing ‘z’.\n\n\n” +
“Your goal: Create a track that keeps the\n” +
“skier alive for exactly 45 seconds.\n\n” +
“Be Careful and Good Luck!”);
addMouseListener(this);
addKeyListener(this);
//set up the counter
cnt = new Counter();
cnt.go = false;
Project 16: Screen Skier—Bulldozer
cnt.start();
76
Project 16: Screen Skier—Bulldozer
}
public void paint(Graphics g)
{
super.paint(g);
//draw the background:
try
{
//this is the general, plain white background: g.setColor(Color.white);
g.fillRect(−2000,−2000,5000,5000);
//this is the image background
URL url = this.getClass().getResource (“bg.png”); Image img = Toolkit.getDefaultToolkit(). getImage(url); g.drawImage(img, 0−focusX, 0−focusY, this);
}
catch(Exception e){}
//set the color to black (for the lines):
g.setColor(Color.black);
//this for loop will go thru every line in the ArrayList and draw them: for(int i = 0; i <lines.size(); i+ +)
{
//get the line in the ArrayList:
Line2D.Double temp = (Line2D. Double) lines.get(i);
//now get all the x’s and y’s
int x1 = Integer.parseInt(“”+Math.round (temp.getX1())); int y1 = Integer.parseInt(“”+Math.round (temp.getY1())); int x2 = Integer.parseInt(“”+Math.round (temp.getX2())); int y2 = Integer.parseInt(“”+Math.round (temp.getY2())); g.drawLine(x1−focusX,y1−focusY,x2−focusX,y2−focusY);
}
if(drawGuy)
{
try
{
//draw the time:
g.setFont(new Font(“times new roman”, Font.BOLD, 16)); URL urlTime = this.getClass().getResource (“time.png”); Image imgT = Toolkit.getDefaultToolkit().getImage (urlTime); g.drawImage(imgT, −35, 10, this);
if(!useHold)
g.drawString(“Current Time: “+count, 50, 50);
else
g.drawString(“Current Time: “+holdTime, 50, 50);
//draw the guy:
if(alive)
{
URL url = this.getClass().getResource (“guy.png”); Image img = Toolkit.getDefaultToolkit().getImage(url); g.drawImage(img, guy.x−focusX, guy.y−focusY, this);
}
else
{
URL url = this.getClass().getResource (“guyDead.png”); Image img = Toolkit.getDefaultToolkit().getImage(url); g.drawImage(img, guy.x−focusX, guy.y−focusY, this);
//if the snd hasn’t been played, play it!
if(!sndPlayed)
77
{
//set up the hold time variable:
holdTime = count;
useHold = true;
//play the sound
URL snd = this.getClass().getResource(“scream.wav”); AudioClip scream = JApplet.newAudioClip(snd);
scream.play();
sndPlayed = true;
//check for a win:
checkWin();
}
}
}
catch(Exception e){}
//reset the focus to the guy’s position
focusX = guy.x−100;
focusY = guy.y−100;
}
}
//check to see if the goal is accomplished
public void checkWin()
{
if(holdTime= =45)
{
JOptionPane.showMessageDialog(null,
“Congrats!\n\n” +
“MISSION ACCOMPLISHED!”);
}
}
//these are the mouse listener methods:
public void mouseClicked(MouseEvent e){}
//these are the mouse listener methods:
public void mouseEntered(MouseEvent e){}
//these are the mouse listener methods:
public void mouseExited(MouseEvent e){}
//these are the mouse listener methods:
public void mousePressed(MouseEvent e)
{
//this code will run when the mouse is first pressed, getting the
//starting point of the line.
holder = new Point2D.Double(e.getX()+focusX,e.getY()+focusY);
}
//these are the mouse listener methods:
public void mouseReleased(MouseEvent e)
{
//this code will run when the mouse is released, completing the
//line and adding it to the ArrayList.
Point2D.Double end = new Point2D.Double(e.getX()+focusX,e.getY()+focusY); lines.add(new Line2D.Double(holder,end));
//now, repinat the screen so the line is drawn: repaint();
}
//these are the key listener methods:
public void keyPressed(KeyEvent e){}
Project 16: Screen Skier—Bulldozer
//these are the key listener methods:
78
Project 16: Screen Skier—Bulldozer
public void keyReleased(KeyEvent e){}
//these are the key listener methods:
public void keyTyped(KeyEvent e)
{
//if the user presses “p” OR “P,” start the Thread if(e.getKeyChar()= =‘p’ || e.getKeyChar()= =‘P’)
{
alive = true;
count = 0;
useHold = false;
//init the Thread:
move = new Move();
cnt.go = true;
move.start();
move.action(true);
sndPlayed = false;
}
//if the user presses “q” OR “Q,” stop the Thread if(e.getKeyChar()= =‘q’ || e.getKeyChar()= =‘Q’)
{
move.action(false);
drawGuy = false;
focusX = 0;
focusY = 0;
move = null;
cnt.go = false;
}
//if the user presses “a” OR “A,” move the focus if(e.getKeyChar()= =‘a’ || e.getKeyChar()= =‘A’)
{
focusX−=100;
repaint();
}
//if the user presses “s” OR “S,” move the focus if(e.getKeyChar()= =‘s’ || e.getKeyChar()= =‘S’)
{
focusY+=100;
repaint();
}
//if the user presses “w” OR “W,” move the focus if(e.getKeyChar()= =‘w’ || e.getKeyChar()= =‘W’)
{
focusY−=100;
repaint();
}
//if the user presses “d” OR “D,” move the focus if(e.getKeyChar()= =‘d’ || e.getKeyChar()= =’D’)
{
focusX+=100;
repaint();
}
//if the user presses “z” OR “Z,” undo the last line if(e.getKeyChar()= =‘z’ || e.getKeyChar()= =‘Z’)
{
lines.remove(lines.size()−1);
repaint();
79
}
//if the user presses “x” OR “X,” clear the track if(e.getKeyChar()= =‘x’ || e.getKeyChar()= =‘X’)
{
//double check before deleting!
int answer = JOptionPane.showConfirm Dialog(null,
“Do you really want to delete your track?”);
if(answer= =JOptionPane.OK_OPTION)
lines.clear();
repaint();
}
}
private class Counter extends Thread
{
public boolean go = true;
public void run()
{
try
{
while(true)
{
if(go)
{
Thread.sleep(1000);
count+ +;
}
}
}
catch(Exception e){}
}
}
//this is the thread that will make the character move private class Move extends Thread
{
//these variables will hold the player’s speed and gravity double velocity;
double gravity;
//stops/starts the thread:
boolean go = false;
public void run()
{
if(go)
{
initGuy();
velocity = 0;
gravity = 1;
}
while(go)
{
try
{
//this will hold the line the guy is on (null if none) Line2D.Double lineTaken = null;
//this will say whether the character is even on a line boolean onLine = false;
//gravity needs to be reset when the guy first lands on
//the line. This will hold that info. It holds the line #
Project 16: Screen Skier—Bulldozer
80
Project 16: Screen Skier—Bulldozer
int firstOnLine = −1;
//check if he is on a line:
for(int i = lines.size()−1; i>=0; i− −)
{
//get the line:
Line2D.Double temp = (Line2D.Double) lines.get(i); if(temp.intersects(guy.x,guy.y,30,30))
{
lineTaken = temp;
onLine = true;
if(firstOnLine!=i)
{
firstOnLine = i;
gravity = 0;
}
break;
}
}
//if there is a line it is on ...
if(onLine)
{
//now, get the new gravity by subtracting the y’s and
//dividing by 20
double mGrav = (lineTaken.y2−lineTaken.y1)/50;
//now, get the new velocity by subtracting the x’s and
//dividing by 20
double mVel = (lineTaken.x2−lineTaken.x1)/100;
//set the maximum values
if(velocity<5)
velocity+=mVel;
if(gravity<2.5)
gravity+=mGrav;
}
else
{
gravity+=.2;
}
//alter the guy’s movements:
guy.x += velocity;
guy.y += gravity;
//check to see if the guy died:
if(guy.y>1400)
{
alive = false;
}
//delay before repainting:
Thread.sleep(75);
//repaint:
repaint();
}
catch(Exception e){ break; }
}
}
public void action(boolean a)
{
//stops the thread:
81

go = a;
}
public void initGuy()
{
/*
* This code will set up the character’s position
*/
//get the first line
Line2D.Double firstLine = (Line2D.Double) lines.get(0);
//get the first “x” and “y” of that line:
int x = Integer.parseInt(“”+Math.round (firstLine.x1)); int y = Integer.parseInt(“”+Math.round(firstLine.y1)); guy = new Rectangle(x+30,y−20,30,30);
drawGuy = true;
}
}
public static void main (String[] args)
{
//begin the program:
new G2P4();
}
}
Figures 16-2 through 16-5 demonstrate
Right now, Screen Skier is a fun drawing tool.
the program’s ability to add or delete
In the next project, learn how to transform Screen track.
Skier into a high pressure “time-trial” game.
Project 16: Screen Skier—Bulldozer Figure 16-2 Pre-made slope.
82

Project 16: Screen Skier—Bulldozer
Figure 16-3
“Undoing” the last part of the slope (by pressing “Z”).
Figure 16-4
The slope is about to be cleared (by pressing “X”).
83

Figure 16-5
Slope destruction (by clicking “Okay”).
Project 17: Screen Skier—Competition
Project
Because you want the timer to run only when
the skier is in motion, go to the keyListener
It all comes together right here—the program you code that ends the skier’s run. Insert code that will created turns into an adrenaline pumping game.
end the while loop of the counter by altering a The goal? Make the skier complete his/her run in boolean in the Thread. Also, be sure to make the exactly 45 seconds. Also, add code for sound
boolean true in the keyListener code that makes effects of screams when the skier falls off the the skier begin skiing. This stops the clock when mountain.
the player passes the finish line ... or falls down the ravine.
Making the game
First, create a counter that times the skier’s run by adding a global variable called “count.” Then, initialize a new Thread called “Counter.” In the run method, insert a while loop. Inside the loop, delay for one second and increment “count” by
one. Figure 17-1 demonstrates an innovative way Project 17: Screen Skier—Competition to display the counter.
Figure 17-1
Counter.
84
Project 17: Screen Skier—Competition
To draw the text, use the method
has crashed. If you want, you can change the icon
“g.drawString(“text”,x,y)”
and add sound effects (record your own shrieks!).
You can also set the text before hand with the When the player is flat on his/her face, call a method “g.setFont(new Font()).” To specify
method that checks the time against 45 seconds.
the font, look up Font’s constructors in the API.
Dead or alive, if the slope was completed in
To check if the player has passed the finish line, exactly 45 seconds, the player wins.
create a boolean called “alive.” In the Thread Be sure to stop the counter and display the final that controls movement, check to see if the skier’s time at the end of the run. Do this by creating a y coordinate is greater than 1400 (because 1400 is variable called “holdTime.”
the bottom of the background image). If so, he/she
//import everything:
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;
import java.util.*;
import java.io.*;
import java.net.*;
import java.applet.AudioClip;
//the actual class:
public class G2P5 extends JFrame implements MouseListener, KeyListener
{
//this ArrayList holds the lines:
ArrayList lines = new ArrayList();
//this will hold the first point of the line
Point2D.Double holder;
//these are the Threads:
Move move;
Counter cnt;
//this will hold the character’s information:
Rectangle guy = null;
//this will tell repaint whether or not to draw the guy: boolean drawGuy = false;
//this will hold the seconds the skier has been skiing int counter = 0;
//this will make the screen focus on the guy:
int focusX = 0;
int focusY = 0;
//if the guys hits the bottom, change the icon with this boolean boolean alive = true;
//true if the sound has been played
boolean sndPlayed = false;
//the current time:
int count = 0;
//this holds the final time
int holdTime = 0;
//this says whether or not to use the “hold” value boolean useHold = false;
85
//the constructor:
public G2P5()
{
//set the title:
super(“Screen Skier − Programming Video Games for the Evil Genius”); setSize(700,700);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); JOptionPane.showMessageDialog(null,
“SCREEN SKIER\n\n” +
“Create your own ski run! Simply\n” +
“click and drag the mouse to create\n” +
“a track. Press ‘p’ to start the\n” +
“run and ‘q’ to end it. To create\n” +
“a larger track, use the WASD keys\n” +
“to move the focus of the screen.\n” +
“All uphill slopes become ski lifts.\n” +
“If you make them too steep, however,\n” +
“they may collapse! Also, if you try\n” +
“to even the track out from a large\n” +
“decline, the skier may fall through\n” +
“the track into the snow! Also, if you\n” +
“made a mistake designing your track,\n” +
“you can erase it by pressing ‘x’.\n” +
“You can also undo the last line by\n” +
“pressing ‘z’.\n\n\n” +
“Your goal: Create a track that keeps the\n” +
“skiier alive for exactly 45 seconds.\n\n” +
“Be Careful and Good Luck!”);
addMouseListener(this);
addKeyListener(this);
//set up the counter
cnt = new Counter();
cnt.go = false;
cnt.start();
}
public void paint(Graphics g)
{
super.paint(g);
//draw the background:
try
{
//this is the general, plain white background: g.setColor(Color.white);
g.fillRect(−2000,−2000,5000,5000);
//this is the image background
URL url = this.getClass().getResource (“bg.png”); Image img = Toolkit.getDefaultToolkit(). getImage(url); g.drawImage(img, 0−focusX, 0−focusY, this);
}
catch(Exception e){}
//set the color to black (for the lines):
g.setColor(Color.black);
//this for loop will go thru every line in the ArrayList and draw them: for(int i = 0; i <lines.size(); i+ +)
{
Project 17: Screen Skier—Competition
86
Project 17: Screen Skier—Competition
//get the line in the ArrayList:
Line2D.Double temp = (Line2D.Double) lines.get(i);
//now get all the x’s and y’s
int x1 = Integer.parseInt(“”+Math.round (temp.getX1())); int y1 = Integer.parseInt(“”+Math.round (temp.getY1())); int x2 = Integer.parseInt(“”+Math.round (temp.getX2())); int y2 = Integer.parseInt(“”+Math.round (temp.getY2())); g.drawLine(x1−focusX,y1−focusY,x2−focusX,y2−focusY);
}
if(drawGuy)
{
try
{
//draw the time:
g.setFont(new Font(“times new roman”, Font.BOLD, 16)); URL urlTime = this.getClass().getResource (“time.png”); Image imgT = Toolkit.getDefaultToolkit(). getImage(urlTime); g.drawImage(imgT, −35, 10, this);
if(!useHold)
g.drawString(“Current Time: “+count, 50, 50);
else
g.drawString(“Current Time: “+holdTime, 50, 50);
//draw the guy:
if(alive)
{
URL url = this.getClass().getResource (“guy.png”); Image img = Toolkit.getDefaultToolkit(). getImage(url); g.drawImage(img, guy.x−focusX, guy.y−focusY, this);
}
else
{
URL url = this.getClass().getResource (“guyDead.png”); Image img = Toolkit.getDefaultToolkit().getImage(url); g.drawImage(img, guy.x−focusX, guy.y−focusY, this);
//if the snd hasn’t been played, play it!
if(!sndPlayed)
{
//set up the hold time variable:
holdTime = count;
useHold = true;
//play the sound
URL snd = this.getClass().getResource(“scream.wav”); AudioClip scream = JApplet.newAudioClip(snd);
scream.play();
sndPlayed = true;
//check for a win:
checkWin();
}
}
}
catch(Exception e){}
//reset the focus to the guy’s position
focusX = guy.x−100;
focusY = guy.y−100;
}
}
//check to see if the goal is accomplished
public void checkWin()
87
{
if(holdTime= =45)
{
JOptionPane.showMessageDialog(null,
“Congrats!\n\n” +
“MISSION ACCOMPLISHED!”);
}
}
//these are the mouse listener methods:
public void mouseClicked(MouseEvent e){}
//these are the mouse listener methods:
public void mouseEntered(MouseEvent e){}
//these are the mouse listener methods:
public void mouseExited(MouseEvent e){}
//these are the mouse listener methods:
public void mousePressed(MouseEvent e)
{
//this code will run when the mouse is first pressed, getting the
//starting point of the line.
holder = new Point2D.Double(e.getX()+ focusX,e.getY()+focusY);
}
//these are the mouse listener methods:
public void mouseReleased(MouseEvent e)
{
//this code will run when the mouse is released, completing the
//line and adding it to the ArrayList.
Point2D.Double end = new Point2D.Double(e.getX()+focusX,e.getY()+focusY); lines.add(new Line2D.Double(holder,end));
//now, repinat the screen so the line is drawn: repaint();
}
//these are the key listener methods:
public void keyPressed(KeyEvent e){}
//these are the key listener methods:
public void keyReleased(KeyEvent e){}
//these are the key listener methods:
public void keyTyped(KeyEvent e)
{
//if the user presses “p” OR “P,” start the Thread if(e.getKeyChar()= =‘p’ || e.getKeyChar()= =‘P’)
{
alive = true;
count = 0;
useHold = false;
//init the Thread:
move = new Move();
cnt.go = true;
move.start();
move.action(true);
sndPlayed = false;
}
//if the user presses “q” OR “Q,” stop the Thread if(e.getKeyChar()= =‘q’ || e.getKeyChar()= =‘Q’)
{
move.action(false);
drawGuy
Project 17: Screen Skier—Competition
= false;
88
Project 17: Screen Skier—Competition
focusX = 0;
focusY = 0;
move = null;
cnt.go = false;
}
//if the user presses “a” OR “A,” move the focus if(e.getKeyChar()= =‘a’ || e.getKeyChar()= =‘A’)
{
focusX−=100;
repaint();
}
//if the user presses “s” OR “S,” move the focus if(e.getKeyChar()= =‘s’ || e.getKeyChar()= =‘S’)
{
focusY+=100;
repaint();
}
//if the user presses “w” OR “W,” move the focus if(e.getKeyChar()= =‘w’ || e.getKeyChar()= =‘W’)
{
focusY−=100;
repaint();
}
//if the user presses “d” OR “D,” move the focus if(e.getKeyChar()= =‘d’ || e.getKeyChar()= =‘D’)
{
focusX+=100;
repaint();
}
//if the user presses “z” OR “Z,” undo the last line if(e.getKeyChar()= =‘z’ || e.getKeyChar()= =‘Z’)
{
lines.remove(lines.size()−1);
repaint();
}
//if the user presses “x” OR “X,” clear the track if(e.getKeyChar()= =’x’ || e.getKeyChar()= =’X’)
{
//double check before deleting!
int answer = JOptionPane.showConfirmDialog(null,
“Do you really want to delete your track?”);
if(answer= =JOptionPane.OK_OPTION)
lines.clear();
repaint();
}
}
private class Counter extends Thread
{
public boolean go = true;
public void run()
{
try
{
while(true)
{
if(go)
89
{
Thread.sleep(1000);
count+ +;
}
}
}
catch(Exception e){}
}
}
//this is the thread that will make the character move private class Move extends Thread
{
//these variables will hold the player’s speed and gravity double velocity;
double gravity;
//stops/starts the thread:
boolean go = false;
public void run()
{
if(go)
{
initGuy();
velocity = 0;
gravity = 1;
}
while(go)
{
try
{
//this will hold the line the guy is on (null if none) Line2D.Double lineTaken = null;
//this will say whether the character is even on a line boolean onLine = false;
//gravity needs to be reset when the guy first lands on
//the line. This will hold that info. It holds the line #
int firstOnLine = −1;
//check if he is on a line:
for(int i = lines.size()−1; i>=0; i− −)
{
//get the line:
Line2D.Double temp = (Line2D.Double) lines.get(i); if(temp.intersects(guy.x,guy.y,30,30))
{
lineTaken = temp;
onLine = true;
if(firstOnLine!=i)
{
firstOnLine = i;
gravity = 0;
}
break;
}
}
//if there is a line it is on...
if(onLine)
{
Project 17: Screen Skier—Competition
//now, get the new gravity by subtracting the y’s and 90
Project 17: Screen Skier—Competition
//dividing by 20
double mGrav = (lineTaken.y2−line Taken.y1)/50;
//now, get the new velocity by subtracting the x’s and
//dividing by 20
double mVel = (lineTaken.x2−line Taken.x1)/100;
//set the maximum values
if(velocity<5)
velocity+=mVel;
if(gravity<2.5)
gravity+=mGrav;
}
else
{
gravity+=.2;
}
//alter the guy’s movements:
guy.x += velocity;
guy.y += gravity;
//check to see if the guy died:
if(guy.y>1400)
{
alive = false;
}
//delay before repainting:
Thread.sleep(75);
//repaint:
repaint();
}
catch(Exception e){ break; }
}
}
public void action(boolean a)
{
//stops the thread:
go = a;
}
public void initGuy()
{
/*
* This code will set up the character’s position
*/
//get the first line
Line2D.Double firstLine = (Line2D.Double) lines.get(0);
//get the first “x” and “y” of that line:
int x = Integer.parseInt(“”+Math.round (firstLine.x1)); int y = Integer.parseInt(“”+Math.round(firstLine.y1)); guy = new Rectangle(x+30,y−20,30,30);
drawGuy = true;
}
}
public static void main (String[] args)
{
//begin the program:
new G2P5();
}
}
91

Figure 17-2
Welcome screen.
Project 17: Screen Skier—Competition Figure 17-3 Skiing.
92

Project 17: Screen Skier—Competition
Figure 17-4
End of the run.
Figures 17-2 through 17-4 illustrate the game
Turn the trees into obstacles. Run into them and play of the final version of Screen Skier.
you lose!
Change the time goal.
Customizing the game
Add a second skier racing at a different speed—
tracked by a second counter.
Look up a class called MouseMotionListener in the Make the lines automatically lock together
API. It works just like MouseListener. Utilizing the (use the previous line’s last point) to create a new class, generate a line from the first point of the continuous slope.
slope to the mouse’s current position. This lets the player preview his/her line before actually drawing it.
Record affirmations to get you through the slope (“You can do it!” “Fantastic skiing!”).
Draw your own icon for the skier.
Create your own background graphic (blacken
Create random avalanches in the middle of
the background, change the trees to stars and ski the run.
between galaxies).
Intersect with an out of control snowboarder.
When the user presses a number, the
Add cheat codes ... let the player jump into a coordinating line is deleted.
snowmobile.
93
This page intentionally left blank
Section Three
Board Games
Project 18: Whack-an Evil Genius—The Lab
After this code, you must specify how you want the components added. There are many ways to
Whack-an Evil Genius
orient them: you can place them in a grid, on the sides, one after another, etc. In this book, we will An Evil Genius is hiding in his lab waiting to focus on placing the components one after another –
unleash havoc upon the world. Because he fears a FlowLayout. This layout is the easiest to code sunshine and fresh air, he only comes out briefly.
and the easiest to understand. To set the Container When he does, your job is to whack him with a click to a FlowLayout, use the following code.
of the mouse so he goes back to his underground lab.
The problem? He keeps cloning himself.
cont.setLayout(new FlowLayout());
Now, before you start creating components,
there is just one more thing: the very last line of Project
the constructor should now say:
Begin by creating the laboratory.
setContentPane(cont);
“cont” can be replaced with the name of your
New building blocks
Container. This line makes sure the JFrame
displays every component you have added.
Components, JButtons, JLabels
JButtons
Components
A button is a clickable area. In Java, buttons are A component is a device that can be added to
called JButtons.
any Java program to increase functionality. Some A simple button is illustrated in Figure 18-1.
common components include buttons, textfields, and labels. Before you add components, however, When creating JButtons, it is best to create them you need a place to put them. That place is called globally (outside of the constructor but inside the a Container. To create a container, place the
class). This way, it will be easier to modify their following code in your constructor after the
text anywhere in the program.
JFrame is created.
To create a JButton, use the following code:
Container <varName> = getContentPane();
JButton <varName> = new JButton(“Text”);
<varName> is a variable; it can be named
<varName> can be anything; it is a variable. “Text”
anything.
is the text that is displayed on the inside of a 95

however, there is one method you should know. It is the “setEnabled()” method. It takes in a boolean.
For example, if you have a JButton named “button,”
the following code disables the button.
button.setEnabled(false);
Or, to enable the JButton, use the following code: button.setEnabled(true);
JLabels
Figure 18-1
JButton.
A JLabel is another type of component. It allows text to be displayed on the JFrame. A JLabel is JButton. If you wish to display an image instead of illustrated in Figure 18-3.
text, use the following code:
To create a JLabel, use the following code:
ImageIcon <imgName> = new ImageIcon(“path JLabel <varName> = new JLabel(“Text”);
with extension”);
JButton <varName> = new JButton(<imgName>); Like a JButton, JLabels can be added to the
<imgName> and <varName> are variable name; you JFrame using the following code (if Container is can name them whatever you want. “path with
called “cont”):
extension” should be the path of the file from the cont.add(<varName>);
location of the Java program. A button with an Now that you know how to add JLabels, it is
image is illustrated in Figure 18-2.
helpful to know how to position them. By using a To add a JButton to the container (if the
method called “setBounds(),” you can position
Container’s name is “cont” and the JButton’s
the JLabel wherever you want. “setBounds()”
name is “button”), simply use the following code: takes in an x and y coordinate as well as the width cont.add(button);
and height of the label. For example, if you want to position a label at (50,100), simply use the JButtons have many methods for disabling,
following code:
enabling, setting their icons, among other things.
A full list is available in the API. For this game, cont.setLocation(50,100,<width>,<height>); Project 18: Whack-an Evil Genius—The Lab Figure 18-2 JButton with an ImageIcon.
Figure 18-3
JLabel.
96
Project 18: Whack-an Evil Genius—The Lab
JLabels can also hold an image like JButtons.
Making the game
The code is almost identical:
Create a JFrame. Then, add a container. Next,
ImageIcon image = new ImageIcon(“path with
create a 5×5 array of JButtons, use for loops to extension”);
initialize the JButtons in the array, and add the JLabel label = new JLabel (image);
buttons to the container. Make sure to add images When using JLabels, it is often useful to update of an Evil Genius to the buttons! And don’t forget the text. To do this, use a method called
to disable all of the buttons. Lastly, create and add
“setText().” It takes in a String. For example a JLabel that holds the score (for now, just make it (if your JLabel is named “label”):
say “SCORE: ”).
label.setText(“This is the new text.”);
import javax.swing.event.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class Whack-an extends JFrame
{
//this array holds the 25 “evil geniuses”
JButton[][] spots = new JButton[5][5];
//these are the two icons that pop up when the “evil genius”
//comes out of his lab
ImageIcon alive = new ImageIcon(“alive.GIF”);
//the label:
JLabel score = new JLabel(“SCORE: “);
//the constructor
public Whack-an()
{
//create the JFrame
super(“Whack-an Evil Genius”);
setSize(350,325);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
//this holds the buttons and labels
Container cont = getContentPane();
cont.setLayout(new FlowLayout());
//this prepares the buttons for displaying
for(int i = 0; i < spots.length; i + +)
{
for(int j = 0; j < spots[0].length; j++)
{
//create the JButton
spots[i][j] = new JButton(alive);
//add it to the JFrame
cont.add(spots[i][j]);
//make it disabled
spots[i][j].setEnabled(false);
}
}
//this makes the JLabel display the score
score.setText(“SCORE: “);
cont.add(score);
97

Figure 18-4
The game so far.
setContentPane(cont);
}
public static void main (String[] args)
{
//start the game
new Whack-an();
}
}
The first part of Whack-an Evil Genius is
In the next project, you will learn how to make illustrated in Figure 18-4.
Whack-an Evil Genius operational by determining if a JButton has already been pressed.
Project 19: Whack-an Evil Genius—Quick! Get ‘em!
Project
ActionListener
The game takes form. The face of the Evil Genius An ActionListener does exactly as it sounds: it appears. But have no fear, you will be able to listens for actions. In this case, actions are the whack him away by adding user interaction.
player clicking buttons. An ActionListener must be added to every button you want to listen to. In the New building blocks
case of Whack-an Evil Genius, you will want each Project 19: Whack-an Evil Genius—Quick! Get ‘em! ActionListener and every button to have an ActionListener. To add 98
Project 19: Whack-an Evil Genius—Quick! Get ‘em!
an ActionListener to a JButton called “button,” for the name of the button to see which one has been example, use the following code:
clicked.
button.addActionListener(this);
Making the game
If you are using ActionListeners, you must use
“implements ActionListener.” If you are
First, add ActionListeners to every button in the already implementing “KeyListener,” you can
array. Then, implement ActionListener and add the implement both by separating them with a comma.
mandatory method.
Remember how the KeyListener had so many
Next, create a new Thread. In its infinite while mandatory methods? Well, luckily, ActionListener loop, make the program wait a random amount of only has one mandatory method. When a button is time (between 0 and 1500 milliseconds). Then,
pressed, Java goes to that method. This is how that have a random Evil Genius pop up (by enabling
method should be created:
it). Wait 1000 milliseconds, and then disable the public void actionPerformed (ActionEvent event) button.
{
Now, go back to the actionPerformed method.
}
When a button is pressed, increment the counter To find out which button has been pressed,
that keeps track of the score, and then pause both simply put the following condition inside of an threads for a quarter of a second (this gives the if-statement:
player time to catch his or her breath).
event.getSource()= =<button name>
You can then display the score in the JLabel.
Remember how I suggested that you make your
buttons global? This is why. You need to refer to import javax.swing.event.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class Whack-an extends JFrame implements ActionListener
{
//this array holds the 25 “evil geniuses”
JButton[][] spots = new JButton[5][5];
//this displays the game’s status
JLabel score = new JLabel();
//the score:
double hits = 0;
//these are the two icons that pop up when the “evil genius”
//comes out of his lab
ImageIcon alive = new ImageIcon(“alive.GIF”);
//this is the thread:
T runner = null;
//the constructor
public Whack-an()
{
99
//create the JFrame
super(“Whack-an Evil Genius”);
setSize(350,325);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
//this holds the buttons and labels
Container cont = getContentPane();
cont.setLayout(new FlowLayout());
//this prepares the buttons for displaying
for(int i = 0; i < spots.length; i + +)
{
for(int j = 0; j < spots[0].length; j++)
{
//create the JButton
spots[i][j] = new JButton(alive);
//add it to the JFrame
cont.add(spots[i][j]);
//make it disabled
spots[i][j].setEnabled(false);
//make it respond to clicks
spots[i][j].addActionListener(this);
}
}
cont.add(score);
setContentPane(cont);
//this starts the Thread
runner = new T();
runner.start();
setContentPane(cont);
}
//the thread:
private class T extends Thread
{
public void run()
{
//an infinite loop
while(true)
{
//create a random time delay between 0 and 1.5 seconds int timeDelay = (int)(Math.random()*1500);
try
{
//pause for the random time
Thread.sleep(timeDelay);
}
catch(Exception e)
{ }
//make a random genius pop up
int genius = (int)(Math.random()*5);
int genius2 = (int)(Math.random()*5);
//make the genius come out by enabling the button spots[genius][genius2].setEnabled(true);
try
{
//pause to let the user try to catch
//the evil genius
Thread.sleep(1000);
Project 19: Whack-an Evil Genius—Quick! Get ‘em!
}
100

Project 19: Whack-an Evil Genius—Quick! Get ‘em!
catch(Exception e)
{ }
//make the genius disappear
spots[genius][genius2].setEnabled(false);
//display the stats
score.setText(“SCORE: ”+hits);
}
}
}
//this checks to see if the button was clicked public void actionPerformed(ActionEvent e)
{
//increase the score
hits+ + ;
//pause the game for 1/2 a second
try
{
runner.sleep(500);
Thread.sleep(500);
}
catch(Exception ex)
{ }
}
public static void main (String[] args)
{
//start the game
new Whack-an();
}
}
Figure 19-1
Evil Geniuses are hiding
101

Figure 19-2
Quick! Catch him!
Figures 19-1 and 19-2 illustrate the game play of Warning: this guy can get pretty slippery as he Whack-an Evil Genius.
learns from his mistakes ... After all, he is an Evil Move on to increasing the difficulty levels as the Genius!!!
player keeps on trying to whack the Evil Genius.
Project 20: Whack-an Evil Genius—Getting Smarter ...
Project
chances he/she wants to whack away the Evil Genius.
Then, create a variable to count the attempts. At the In this project, tension builds as the Evil Genius beginning of the Thread’s while loop, increment the appears and disappears faster and faster. Torment counter. Make a message pop up displaying the
your players as you learn how to control the levels number of hits multiplied by 10,000 and then divided of difficulty.
by the number of chances. This ends the game.
A sample dialog box is shown in Figure 20-1.
Making the game
Next, add an int called “maxDelay.” Start by
setting it at 1000. Every time an Evil Genius is When games do not increase in difficulty, they caught, subtract 100 from it. Then, create a random quickly become boring. Right now, Whack-an Evil int based off this number:
Genius is set at an intermediate level. To solve this int delay = (int)(Math.random()*maxDelay);
problem, start by asking the player how many
Project 20: Whack-an Evil Genius—Getting Smarter ...
102

Project 20: Whack-an Evil Genius—Getting Smarter .
Use this new number as the delay time (how
long the Evil Genius makes an appearance). This way, the better you do, the more difficult the game becomes.
Figure 20-1
Score is displayed; game over.
import javax.swing.event.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class Whack-an extends JFrame implements ActionListener
{
//this array holds the 25 “evil geniuses”
JButton[][] spots = new JButton[5][5];
//this displays the game’s status
JLabel score = new JLabel();
//these are the variables that keep track of the score int maxDelay = 1000;
double hits = 0;
double turns = 0;
double maxTurn = 0;
//these are the two icons that pop up when the “evil genius”
//comes out of his lab
ImageIcon alive = new ImageIcon(“alive.GIF”);
//this is the thread:
T runner = null;
//the constructor
public Whack-an()
{
//create the JFrame
super(“Whack-an Evil Genius”);
setSize(350,325);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
//this holds and inputs the number
//of rounds the user will play
maxTurn = Double.parseDouble
(JOptionPane.showInputDialog(“How many chances do you\n”+“want to whack an evil genius?”));
//this holds the buttons and labels
Container cont = getContentPane();
cont.setLayout(new FlowLayout());
//this prepares the buttons for displaying
.
for(int i = 0; i < spots.length; i + +)
{
.
for(int j = 0; j < spots[0].length; j++)
103
{
//create the JButton
spots[i][j] = new JButton(alive);
//add it to the JFrame
cont.add(spots[i][j]);
//make it disabled
spots[i][j].setEnabled(false);
//make it respond to clicks
spots[i][j].addActionListener(this);
}
}
//this makes the JLabel display the score
score.setText(“Turn “+turns+”/”+maxTurn+“. Current Score:
”+((int)((hits/maxTurn)*100)));
cont.add(score);
setContentPane(cont);
//this starts the Thread
runner = new T();
runner.start();
}
//the thread:
private class T extends Thread
{
public void run()
{
//an infinite loop
while(true)
{
//check for game over
if(turns>=maxTurn)
{
//if the game is over, display the score
JOptionPane.showMessageDialog(null,
“The game is over.\n\n”+“You hit ”+
hits+“ evil geniuses in ”+turns+“ turns.\n”+“Your score is ”+
((int)(((hits*10000)/turns))),
“Game Over”,
JOptionPane.INFORMATION_MESSAGE);
break;
}
//count the number of turns
turns+ +;
//create a random time delay between 0 and 1.5 seconds int timeDelay = (int)(Math.random()*1500);
try
{
//pause for the random time
Thread.sleep(timeDelay);
}
catch(Exception e)
{ }
//make a random genius pop up
int genius = (int)(Math.random()*5);
int genius2 = (int)(Math.random()*5);
//make the genius come out by enabling the button spots[genius][genius2].setEnabled(true);
try
{
//pause to let the user try to catch
Project 20: Whack-an Evil Genius—Getting Smarter ...
//the evil genius
104

Project 20: Whack-an Evil Genius—Getting Smarter .
Thread.sleep(maxDelay);
}
catch(Exception e)
{ }
//make the genius disappear
spots[genius][genius2].setEnabled(false);
//display the stats
score.setText(“Turn “+turns+”/”+maxTurn+
“. Current Score: ”+
((int)(((hits*10000)/maxTurn))));
}
}
}
//this checks to see if the button was clicked public void actionPerformed(ActionEvent e)
{
//if an evil genius was caught,
//decrease the time each genius is shown,
//making the game harder
maxDelay−=100;
//increase the score
hits + + ;
//pause the game for 1/2 a second
try
{
runner.sleep(500);
Thread.sleep(500);
}
catch(Exception ex)
{ }
}
public static void main (String[] args)
{
//start the game
new Whack-an();
}
}
Figures 20-2 through 20-4 illustrate the game
Ready for special effects? In the next project, play of Whack-an Evil Genius.
explore lots of ways to add realistic and/or wild features to your game for enhanced play value.
..
Figure 20-2
Select the number of rounds.
105

Figure 20-3
Catch ‘em!!!
Figure 20-4
.
Project 21: Whack-an Evil Genius—Showdown
Project
Making the game
Music, boos, applause, crashes, thunder,
Before adding sound effects, you must decide
explosions, or any other sounds can be added for where to put them and what they should be. For more intense game play. But it doesn’t stop there.
example, when the player whacks an Evil Genius To give the game even more dimensional quality, away, he could say something scientific ...
you’ll also learn how to add images.
“E=MC2,” for example. When an Evil Genius
Project 21: Whack-an Evil Genius—Showdown
106

Project 21: Whack-an Evil Genius—Showdown
method, play the scientific sound. In the Thread, right before you disable the button, play the sound of the door slamming shut.
Lastly, create an amazing title image like the one shown in Figure 21-1. Attach it to a JLabel and add the JLabel to the container before creating any Figure 21-1
Title image.
of the buttons.
Remember, all of these sounds and images
disappears, the sound of a door slamming shut
can be downloaded for free from
could be played.
www.books.mcgraw-hill.com/authors/cinnamon
Now, after retrieving the sound file, program the sounds globally. Next, in the actionPerformed
import javax.swing.event.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;
import java.applet.AudioClip;
public class Whack-an extends JFrame implements ActionListener
{
//this array holds the 25 “evil geniuses”
JButton[][] spots = new JButton[5][5];
//this displays the game’s status
JLabel score = new JLabel();
//these are the variables that keep track of the score int maxDelay = 1000;
double hits = 0;
double turns = 0;
double maxTurn = 0;
//these are the two icons that pop up when the “evil genius”
//comes out of his lab
ImageIcon alive = new ImageIcon(“alive.GIF”);
//this is the thread:
T runner = null;
URL sci = null, dr = null;
AudioClip scientific = null, door = null;
//the constructor
public Whack-an()
{
//create the JFrame
super(“Whack-an Evil Genius”);
setSize(350,475);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); try
{
sci = this.getClass().getResource(“sci.wav”);
dr = this.getClass().getResource (“door.wav”); scientific = JApplet.newAudioClip(sci);
door = JApplet.newAudioClip(dr);
107
}
catch(Exception e){ }
//this holds and inputs the number
//of rounds the user will play
maxTurn = Double.parseDouble(JOptionPane.showInputDialog(“How many chances do you\n”+
“want to whack an evil genius?”));
//this holds the buttons and labels
Container cont = getContentPane();
cont.setLayout(new FlowLayout());
//this JLabel will be the title image.
//notice how you can create a JLabel and
//add an image all on one line ...
JLabel title = new JLabel(new ImageIcon(“title.PNG”));
//now add it:
cont.add(title);
//this prepares the buttons for displaying
for(int i = 0; i < spots.length; i+ +)
{
for(int j = 0; j < spots[0].length; j++)
{
//create the JButton
spots[i][j] = new JButton(alive);
//add it to the JFrame
cont.add(spots[i][j]);
//make it disabled
spots[i][j].setEnabled(false);
//make it respond to clicks
spots[i][j].addActionListener(this);
}
}
//this makes the JLabel display the score
score.setText(“Turn “+turns+”/”+maxTurn+“. Current Score: ”+((int) ((hits/maxTurn)*100)));
cont.add(score);
setContentPane(cont);
//this starts the Thread
runner = new T();
runner.start();
}
//the thread:
public class T extends Thread
{
public void run()
{
//an infinite loop
while(true)
{
//check for game over
if(turns>=maxTurn)
{
//if the game is over, display the score
JOptionPane.showMessageDialog(null,
“The game is over.\n\n”+“You hit ”+
hits+“ evil geniuses in ”+turns+“ turns.\n”+“Your score is
”+((int)(((hits*10000)/turns))),
“Game Over”,
JOptionPane.INFORMATION_MESSAGE);
Project 21: Whack-an Evil Genius—Showdown
break;
}
108
Project 21: Whack-an Evil Genius—Showdown
//count the number of turns
turns+ +;
//create a random time delay between 0 and 1.5 seconds int timeDelay = (int)(Math.random()*1500);
try
{
//pause for the random time
Thread.sleep(timeDelay);
}
catch(Exception e)
{ }
//make a random genius pop up
int genius = (int)(Math.random()*5);
int genius2 = (int)(Math.random()*5);
//make the genius come out by enabling the button spots[genius][genius2].setEnabled(true);
try
{
door.play();
//pause to let the user try to catch
//the evil genius
Thread.sleep(maxDelay);
}
catch(Exception e)
{ }
//make the genius disappear
spots[genius][genius2].setEnabled(false);
//display the stats
score.setText(“Turn “+turns+”/”+maxTurn+“. Current Score: ”+((int)(((hits*10000)/
maxTurn))));
}
}
}
//this checks to see if the button was clicked public void actionPerformed(ActionEvent e)
{
//if an evil genius was caught,
//decrease the time each genius is shown,
//making the game harder
maxDelay−=100;
scientific.play();
//increase the score
hits+ +;
//pause the game for 1/2 a second
try
{
runner.sleep(500);
Thread.sleep(500);
}
catch(Exception ex)
{ }
}
public static void main (String[] args)
{
//start the game
new Whack-an();
}
}
109

Figures 21-2 and 22-3 illustrate the addictive Create your own title image.
game play of Whack-an Evil Genius.
Develop different levels (when you capture 10 Evil Geniuses, move on to the next, faster-paced level).
Customizing the game
Create a high score list using file writing and Change the dimensions of the board: you can make reading.
it anything from a simple 2×2 button setup to a Every few rounds, have your Evil Genius morph
super-complicated 100×100 buttons setup!
into a different icon. Create some “good-guy
Change the icon of the Evil Genius: use a
icons.” If you accidentally whack them, you
picture of yourself ... or your “favorite” coworker.
automatically lose!
Add background music.
Figure 21-2
30 whacks.
Project 21: Whack-an Evil Genius—Showdown Figure 21-3 Title image.
110
Project 22: Tic-Tac-Toe Boxing—The Ring
Project 22: Tic-Tac-Toe Boxing—The Ring
<component> is the variable that represents the component. The rest of the parameters are self-Tic-Tac-Toe Boxing
explanatory.
Before you create original games and add
The classic game of Tic-Tac-Toe is transformed components based on pixel location, you need to into a boxing match in which each “fighter” is know one more thing: a NullLayout is not the most represented by a different boxing glove image. By reliable layout. There is always a chance that the adding punching sounds, groans, or taunts, you will be able to challenge you opponent (or the screen will not refresh and your change will not be computer) to win, lose, or draw.
displayed. No worries, however! There is an easy fix to this problem so your changes will always register. After you add everything you need to the Project
container, type the following:
Start by creating the ring so you can touch gloves container.repaint();
and come out fighting!!!
Making the game
New building blocks
First, create an array of JButtons nine elements NullLayout
long to hold the game board. Add the buttons from the array to the container inside a loop.
NullLayout
Remember—you will be adding the components
based on pixel location. So, figure out a simple Instead of using a FlowLayout, which simply
algorithm that spaces the pieces of the ring
places components one after another, you can use correctly. Here is a suggestion: each of the images a NullLayout which allows you to specify the
used with the game are 100 by 100 pixels, so the location of the component in pixel coordinates.
boxes should be 100 pixels apart. In addition, To use a NullLayout, change the “
create two variables set to zero outside of the loop.
setLayout” line
to the following:
At each iteration, increment one of the variables by one. Then, multiply this value by 100 to get the container.setLayout(null);
correct “x” spacing. Add an if statement inside of You can still add components the same way you
your for loop. Make it check to see if the counter did with the FlowLayout. To specify the pixel
is a multiple of 3 (because the board is three pieces location of the component, use the following code long). If so, drop the other pieces down one line by only after you added the component to the
incrementing the second variable by one. Okay ...
Container:
it sounds confusing, but once you see the code, as
<
shown below, it will all make sense.
component>.setBounds(<x>, <y>, <width>,
<height>);
int newLine = 0;
111
int lineCount = 0;
Now that the board is complete, create a global for(int i = 0; i < spots.length; i+ +)
variable called “turn.” Everytime the
{
//initialize it with a blank image
“actionPerformed” method executes, “turn”
spots[i] = new JButton(blank);
should be incremented by one. Then, you will be
//this checks whether to use a new row
able to check to see whose turn it is based on if(i= =3 || i = =6)
{
“turn” being even or odd.
newLine+ +;
In “actionPerformed,” if “turn” is odd, it is
lineCount = 0;
}
player O’s turn. If it is even, player X is up.
//set the position of the button
Depending on whose turn it is, set the icons to the spots[i].setBounds(lineCount*100,newLine*
100,100,100);
correct images. After setting the icon, remember to
//add it to the container
remove the ActionListener so a player can not steal container.add(spots[i]);
his/her opponent’s position!
//and now add the action listener:
spots[i].addActionListener(this);
lineCount+ +;
}
//import everything:
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;
//the class with the JFrame and the ActionListner: public class TicTacToe extends JFrame implements ActionListener
{
//this is an array of the buttons (spots). We use an array, not
//an arrayList because the number of buttons is constant; it does
//not change.
JButton spots[] = new JButton[9];
//this will keep track of turns: even is player 1; odd is player2
//we will use mod (%) to differentiate the values: int turn = 1;
//these images represent the sides
ImageIcon red = new ImageIcon(“red.png”);
ImageIcon blue = new ImageIcon(“blue.png”);
ImageIcon blank = new ImageIcon(“blank.png”);
//the constructor
public TicTacToe()
{
super(“TicTacToe: Boxing Style”);
setSize(330,350);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
//this will hold the buttons:
Container container = getContentPane();
//this will tell the computer how to display the buttons: container.setLayout(null);
int newLine = 0;
int lineCount = 0;
Project 22: Tic-Tac-Toe Boxing—The Ring
for(int i = 0; i < spots.length; i+ +)
112
Project 22: Tic-Tac-Toe Boxing—The Ring
{
//initialize it with a blank image
spots[i] = new JButton(blank);
//this checks whether to use a new row
if(i= =3 || i = =6)
{
newLine+ +;
lineCount = 0;
}
//set the position of the button
spots[i].setBounds(lineCount*100,newLine*100,100,100);
//add it to the container
container.add(spots[i]);
//and now add the action listener:
spots[i].addActionListener(this);
lineCount+ +;
}
}
//the mandatory method:
public void actionPerformed(ActionEvent e)
{
//this will check the button pressed:
for(int i = 0; i < spots.length; i+ +)
{
if(e.getSource()= =spots[i])
{
//check which turn:
if(turn%2= =0)
{
//if even, player 1’s turn (X)
spots[i].setIcon(red);
}
else
{
//if odd, player 2’s turn (O)
spots[i].setIcon(blue);
}
//disable the btn so it can’t be re-pressed
spots[i].removeActionListener(this);
}
}
turn+ +;
//before letting the other player go, check whhether a player won: checkWin();
}
public void checkWin()
{
//first, we will use to go through three iterations. This allows us to
//check for both horizontal and vertical wins without using too
//much code:
for(int i = 0; i < 3; i+ +)
{
//this checks for a vertical X win
if(spots[i].getText()= =“X” &&
spots[i+3].getText()= =“X” &&
spots[i+6].getText()= =“X”)
JOptionPane.showMessageDialog(null,“X Wins”);
//this checks for a vertical O win
if(spots[i].getText()= =“O” &&
spots[i+3].getText()= =“O” &&
113

spots[i+6].getText()= =“O”)
JOptionPane.showMessageDialog(null,“O Wins”);
//this checks for a vertical X win
if(spots[i*3].getText()= =“X” &&
spots[(i*3)+1].getText()= =“X” &&
spots[(i*3)+2].getText()= =“X”)
JOptionPane.showMessageDialog(null,“X Wins”);
//this checks for a vertical X win
if(spots[i*3].getText()= =“O” &&
spots[(i*3)+1].getText()= =“O” &&
spots[(i*3)+2].getText()= =“O”)
JOptionPane.showMessageDialog(null,“O Wins”);
}
//now, this loop will check for diagnol wins
for(int i = 0; i <= 2; i+=2)
{
//this will check for diagnol X wins
if(spots[i].getText()= =“X” &&
spots[4].getText()= =“X” &&
spots[8-i].getText()= =“X”)
JOptionPane.showMessageDialog(null,“X Wins”);
//this will check for diagnol O wins
if(spots[i].getText()= =“O” &&
spots[4].getText()= =“O” &&
spots[8-i].getText()= =“O”)
JOptionPane.showMessageDialog(null,“O Wins”);
}
}
//starter (main) method:
public static void main(String[] args) {
TicTacToe ttt = new TicTacToe();
}
}
Figures 22-1 through 22-4 illustrate the exciting computer to determine whether Player One is the game play of Boxing Tic-Tac-Toe.
winner, Player Two is a winner, or if the boxing Fair fighting requires an impartial judge. In the match ends in a draw.
next project, you are going to program the
Project 22: Tic-Tac-Toe Boxing—The Ring Figure 22-1 Game start up.
Figure 22-2
Player One’s punch.
114

Project 23: Tic-Tac-Toe Boxing—Fight!!!
Figure 22-3
Player Two’s counter-punch.
Figure 22-4
Player Two (“O”) wins ... but the
computer cannot yet detect the result.
Project 23: Tic-Tac-Toe Boxing—Fight!!!
Project
Next, you will teach the computer how to check for knockouts. Create a method named checkWin.
Welcome to training camp. It is here where you At the end of the actionPerformed method, call will enable your two fighters to square off in the checkWin. Now that you have created the methods, ring. Add a title image to hype the fans, and
there are two techniques you can use to check for program your computer to determine who’s the
wins. The first is a heck of a lot of if-statements ...
champ and who’s the chump.
not fun! The second technique requires much less code. Because of the nature of Tic-Tac-Toe (being a square), it is easier to use if-statements inside of Making the game
for loops. This cuts down nearly 66% of the
First, start with the easier of the two objectives: code. As illustrated in Figure 23-2, you can see adding the title image. To do this, create a title that a single loop can check six different cases.
image in paint. Next, create a JLabel that will And now the difficult part: writing that pesky for display that image. Add this JLabel above the
loop. To do this, create a for loop that counts from buttons (at location 0,0). Don’t forget to change 0 to 2 (three iterations). Inside the loop, add four the loop that adds the buttons so they will not be different if-statements. One will check for a
covered by the title image. Do this by simply
vertical X win; one will check for a vertical O win; adding the height of the image to the y value of the one for a horizontal X win; and the last one, for a buttons. You can also add a set number to the
horizontal O win. Each loop determines if the icon x value of the buttons so they will be centered, as of the buttons in the appropriate position are all the shown in Figure 23-1.
same color. The actual code in the if-statements is shown below:
115

//this checks for a vertical X win
if(spots[i].getIcon().equals(red) &&
spots[i+3].getIcon().equals(red) &&
spots[i+6].getIcon().equals(red))
JOptionPane.showMessageDialog(null,“X
Wins”);
//this checks for a vertical O win
if(spots[i].getIcon().equals(blue) &&
spots[i+3].getIcon().equals(blue) &&
spots[i+6].getIcon().equals(blue))
JOptionPane.showMessageDialog(null,“O
Wins”);
//this checks for a horizontal X win
if(spots[i*3].getIcon().equals(red) && spots[(i*3)+1].getIcon().equals(red) && spots[(i*3)+2].getIcon().equals(red))
JOptionPane.showMessageDialog(null,“X
Wins”);
//this checks for a horizontal O win
if(spots[i*3].getIcon().equals(blue) && spots[(i*3)+1].getIcon().equals(blue) && spots[(i*3)+2].getIcon().equals(blue))
JOptionPane.showMessageDialog(null,“O
Wins”);
Almost there! You only need one more thing: a
second loop to check for diagonal wins. This can be accomplished the same way as checking for
horizontal and vertical wins, except the loop
should only iterate two times. The entire loop is Figure 23-1
Title image and buttons are centered.
shown below:
//now, this loop will check for diagnol wins
for(int i = 0; i <= 2; i+=2)
{
//this will check for diagnol X wins
if(spots[i].getIcon().equals(red) &&
spots[4].getIcon().equals(red) &&
spots[8−i].getIcon().equals(red))
JOptionPane.showMessageDialog(null,
“X Wins”);
//this will check for diagnol O wins
if(spots[i].getIcon().equals(blue) &&
spots[4].getIcon().equals(blue) &&
spots[8−i].getIcon().equals(blue))
JOptionPane.showMessageDialog(null,
“O Wins”);
}
Congrats! Now you have all the code necessary
to check for wins. The full code is below.
//import everything:
Figure 23-2
Single for loop checks six different
import javax.swing.*;
possible wins.
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;
Project 23: Tic-Tac-Toe Boxing—Fight!!!
//the class with the JFrame and the
116
Project 23: Tic-Tac-Toe Boxing—Fight!!!
ActionListner:
public class TicTacToe extends JFrame implements ActionListener
{
//this is an array of the buttons (spots). We use an array, not
//an arrayList because the number of buttons is constant; it does
//not change.
JButton spots[] = new JButton[9];
//this will keep track of turns: even is player 1; odd is player2
//we will use mod (%) to differentiate the values: int turn = 1;
//these images represent the sides
ImageIcon red = new ImageIcon(“red.png”);
ImageIcon blue = new ImageIcon(“blue.png”);
ImageIcon blank = new ImageIcon(“blank.png”);
//the title image:
JLabel title = new JLabel(new ImageIcon(“title.png”));
//the constructor
public TicTacToe()
{
super(“TicTacToe: Boxing Style”);
setSize(350,625);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
//this will hold the buttons:
Container container = getContentPane();
//this will tell the computer how to display the buttons: container.setLayout(null);
container.add(title);
title.setBounds(0,0,350,288);
int newLine = 0;
int lineCount = 0;
for(int i = 0; i < spots.length; i+ +)
{
//initialize it with a blank image
spots[i] = new JButton(blank);
//this checks whether to use a new row
if(i= =3 || i = =6)
{
newLine+ +;
lineCount = 0;
}
//set the position of the button
spots[i].setBounds(15+(lineCount*100),288+(newLine*100),100,100);
//add it to the container
container.add(spots[i]);
//and now add the action listener:
spots[i].addActionListener(this);
lineCount+ +;
}
//remember to refresh the screen!
container.repaint();
}
//the mandatory method:
public void actionPerformed(ActionEvent e)
{
//this will check the button pressed:
for(int i = 0; i < spots.length; i+ +)
{
if(e.getSource()= =spots[i])
{
117
//check which turn:
if(turn%2= =0)
{
//if even, player 1’s turn (X)
spots[i].setIcon(red);
}
else
{
//if odd, player 2’s turn (O)
spots[i].setIcon(blue);
}
//disable the btn so it can’t be re-pressed
spots[i].removeActionListener(this);
}
}
turn+ +;
//before letting the other player go, check whether a player won: checkWin();
}
public void checkWin()
{
//first, we will use to go through three iterations. This allows us to
//check for both horizontal and vertical wins without using too
//much code:
for(int i = 0; i < 3; i++)
{
//this checks for a vertical X win
if(spots[i].getIcon().equals(red) &&
spots[i+3].getIcon().equals(red) &&
spots[i+6].getIcon().equals(red))
JOptionPane.showMessageDialog(null,“X Wins”);
//this checks for a vertical O win
if(spots[i].getIcon().equals(blue) &&
spots[i+3].getIcon().equals(blue) &&
spots[i+6].getIcon().equals(blue))
JOptionPane.showMessageDialog(null,“O Wins”);
//this checks for a horizontal X win
if(spots[i*3].getIcon().equals(red) && spots[(i*3)+1].getIcon().equals(red) && spots[(i*3)+2].getIcon().equals(red))
JOptionPane.showMessageDialog(null,“X Wins”);
//this checks for a horizontal O win
if(spots[i*3].getIcon().equals(blue) && spots[(i*3)+1].getIcon().equals(blue) && spots[(i*3)+2].getIcon().equals(blue))
JOptionPane.showMessageDialog(null,“O Wins”);
}
//now, this loop will check for diagnol wins
for(int i = 0; i <= 2; i+=2)
{
//this will check for diagnol X wins
if(spots[i].getIcon().equals(red) &&
spots[4].getIcon().equals(red) &&
spots[8−i].getIcon().equals(red))
JOptionPane.showMessageDialog(null,“X Wins”);
//this will check for diagnol O wins
if(spots[i].getIcon().equals(blue) &&
Project 23: Tic-Tac-Toe Boxing—Fight!!!
spots[4].getIcon().equals(blue) &&
118

Project 23: Tic-Tac-Toe Boxing—Fight!!!
spots[8−i].getIcon().equals(blue))
JOptionPane.showMessageDialog(null,“O Wins”);
}
}
//starter (main) method:
public static void main(String[] args) {
TicTacToe ttt = new TicTacToe();
}
}
Figures 23-3 through 23-5 show Tic-Tac-Toe
Ali, Tyson, Foreman—in the next project, program Boxing’s new title image and ability to check for the ultimate boxer by adding artificial intelligence.
knockouts.
Figure 23-4
Computer recognizes Player Two (“O”)
as winner.
Figure 23-3
Player Two (“O”) is about to win!
Figure 23-5
Player One (“X”) wins next round.
119

Project 24: Tic-Tac-Toe Boxing—Knock Out
Project
can start programming the AI! First, instead of switching icons in the actionPerformed method, Forget fancy footwork, quick jabs, and thunderous simply make it display the X icon. Then, at the punches. Artificial Intelligence is the most powerful end of actionPerformed, call a method
force in the boxing ring. This project shows you named ai.
how to use AI to create an opponent that gives you In the method ai, first check the turn counter.
and your friends the ultimate challenge.
If it is the computer’s first turn, choose either the center or top left square. Next, type “return” so Making the game
the method ends and the fighter can make his/her move. If it is not the computer’s first turn, check Although you do not have to learn new code or
for two O’s in a row. If two are found, act
syntax, there is a lot of math involved in creating offensively and grab that spot, as illustrated in Artificial Intelligence (AI). Not a problem.
Figure 24-1. The computer knocks out the
Thinking the game play through before actually player!
programming the AI makes this process easier.
If two O’s in a row are not found, play
Whenever you create AI, you must analyze how
defensively and check for two X’s in a row. Block most people play the game of Tic-Tac-Toe.
that third spot so the other contender cannot win, Usually, one chooses a corner or middle spot first as illustrated in Figure 24-2.
in order to gain the upper hand. Next, he/she
To do this, create a method that takes in an Icon.
analyzes the board for the quickest victory. If a It will check for two in a row of that Icon using win is only one position away, the player takes that for loops. If one is found, take the spot and type position and defeats the opponent. If a win is
“return,” which ends the method so the computer several steps away, defensive thinking is required cannot move twice in a row.
to block the opponent.
That’s it! Begin Round 1! The completed code is Once you have taken into consideration the
below.
human thought process for securing a victory, you Figure 24-2
Play defensively and prevent the X’s
Project 24: Tic-Tac-Toe Boxing—Knock Out Figure 24-1 Act offensively and go for the win.
from winning.
120
Project 24: Tic-Tac-Toe Boxing—Knock Out
//import everything:
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;
//the class with the JFrame and the ActionListner: public class TicTacToe extends JFrame implements ActionListener
{
//this is an array of the buttons (spots). We use an array, not
//an arrayList because the number of buttons is constant; it does
//not change.
JButton spots[] = new JButton[9];
//this will keep track of turns: even is player 1; odd is player2
//we will use mod (%) to differentiate the values: int turn = 1;
//these images represent the sides
ImageIcon red = new ImageIcon(“red.png”);
ImageIcon blue = new ImageIcon(“blue.png”);
ImageIcon blank = new ImageIcon(“blank.png”);
//the title image:
JLabel title = new JLabel(new ImageIcon(“title.png”));
//the constructor
public TicTacToe()
{
super(“TicTacToe: Boxing Style”);
setSize(350,625);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
//this will hold the buttons:
Container container = getContentPane();
//this will tell the computer how to display the buttons: container.setLayout(null);
container.add(title);
title.setBounds(0,0,350,288);
int newLine = 0;
int lineCount = 0;
for(int i = 0; i < spots.length; i+ +)
{
//initialize it with a blank image
spots[i] = new JButton(blank);
//this checks whether to use a new row
if(i= =3 || i = =6)
{
newLine+ +;
lineCount = 0;
}
//set the position of the button
spots[i].setBounds(15+(lineCount*100),288+(newLine*100),100,100);
//add it to the container
container.add(spots[i]);
//and now add the action listener:
spots[i].addActionListener(this);
lineCount+ +;
}
//remember to refresh the screen!
container.repaint();
}
121
//the mandatory method:
public void actionPerformed(ActionEvent e)
{
//this will check the button pressed:
for(int i = 0; i < spots.length; i+ +)
{
if(e.getSource()= =spots[i])
{
//set the button to X
spots[i].setIcon(red);
//disable the btn so it can’t be re-pressed
spots[i].removeActionListener(this);
}
}
turn+ +;
//before letting the other player go, check whether a player won: checkWin();
//this method lets the computer select its turn ai();
}
public void checkWin()
{
//first, we will use to go through three iterations. This allows us to
//check for both horizontal and vertical wins without using too
//much code:
for(int i = 0; i < 3; i+ +)
{
//this checks for a vertical X win
if(spots[i].getIcon().equals(red) &&
spots[i+3].getIcon().equals(red) &&
spots[i+6].getIcon().equals(red))
{
JOptionPane.showMessageDialog(null,“You Win!”); return;
}
//this checks for a vertical O win
if(spots[i].getIcon().equals(blue) &&
spots[i+3].getIcon().equals(blue) &&
spots[i+6].getIcon().equals(blue))
{
JOptionPane.showMessageDialog(null,“YOU LOSE!”); return;
}
//this checks for a horizontal X win
if(spots[i*3].getIcon().equals(red) && spots[(i*3)+1].getIcon().equals(red) && spots[(i*3)+2].getIcon().equals(red))
{
JOptionPane.showMessageDialog(null,“You Win!”); return;
}
//this checks for a horizontal O win
if(spots[i*3].getIcon().equals(blue) && spots[(i*3)+1].getIcon().equals(blue) && spots[(i*3)+2].getIcon().equals(blue))
{
Project 24: Tic-Tac-Toe Boxing—Knock Out
122
Project 24: Tic-Tac-Toe Boxing—Knock Out
JOptionPane.showMessageDialog(null,“YOU LOSE!”); return;
}
}
//now, this loop will check for diagnol wins
for(int i = 0; i <= 2; i+=2)
{
//this will check for diagnol X wins
if(spots[i].getIcon().equals(red) &&
spots[4].getIcon().equals(red) &&
spots[8−i].getIcon().equals(red))
{
JOptionPane.showMessageDialog(null,“You Win!”); return;
}
//this will check for diagnol O wins
if(spots[i].getIcon().equals(blue) &&
spots[4].getIcon().equals(blue) &&
spots[8−i].getIcon().equals(blue))
{
JOptionPane.showMessageDialog(null,“YOU LOSE!”); return;
}
}
}
public void ai()
{
boolean movedYet;
//if this is the computer’s first turn, then try to go in the top left
//if already taken, take the middle
if(turn = = 2)
{
//if the top left is taken, take the middle
if(spots[0].getIcon().equals(red))
{
spots[4].setIcon(blue);
spots[4].removeActionListener(this);
movedYet = true;
}
//else, take the top left
else
{
spots[0].setIcon(blue);
spots[0].removeActionListener(this);
movedYet = true;
}
}
//if this is not the first turn, then check for 2 out of 3 spots
//taken. If there are none, go to a random location else
{
//callin this method checks for two in a row of the first String passed in.
//It then takes the 3rd spot with the 2nd String passed in: movedYet = twoInARow(blue);
//if the computer didn’t take an offensive spot, take a defensive
//one.
if(!movedYet)
123
{
movedYet = twoInARow(red);
//if there is no defensive move, take the next open one.
if(!movedYet)
{
//this loop finds the first untaken spot:
for(int i = 0; i < spots.length; i+ +)
{
//if empty, take it!
if(spots[i].getIcon().equals(blank))
{
spots[i].setIcon(blue);
spots[i].removeActionListener(this);
movedYet = true;
break;
}
}
}
}
}
turn+ +;
System.out.println(turn);
checkWin();
if(!movedYet)
{
//if no spot was taken, it must be a cat’s game: JOptionPane.showMessageDialog(null,“DRAW!!!”);
}
}
public boolean twoInARow(Icon a)
{
for(int i = 0; i < 3; i+ +)
{
//this checks for 2 in a row from the top
if(spots[i].getIcon().equals(a) &&
spots[i+3].getIcon().equals(a) &&
spots[i+6].getIcon().equals(blank))
{
spots[i+6].setIcon(blue);
spots[i+6].removeActionListener(this);
return true;
}
//this checks (from the top and bottom)
//for a taken spot, then a gap, then a taken one: if(spots[i].getIcon().equals(a) &&
spots[i+6].getIcon().equals(a) &&
spots[i+3].getIcon().equals(blank))
{
spots[i+3].setIcon(blue);
spots[i+3].removeActionListener(this);
return true;
}
//this checks for 2 in a row from the bottom
if(spots[i+6].getIcon().equals(a) &&
spots[i+3].getIcon().equals(a) &&
spots[i].getIcon().equals(blank))
{
Project 24: Tic-Tac-Toe Boxing—Knock Out
spots[i].setIcon(blue);
124
Project 24: Tic-Tac-Toe Boxing—Knock Out
spots[i].removeActionListener(this);
return true;
}
//this checks for 2 in a row from the left
if(spots[i*3].getIcon().equals(a) &&
spots[(i*3)+1].getIcon().equals(a) &&
spots[(i*3)+2].getIcon().equals(blank))
{
spots[(i*3)+2].setIcon(blue);
spots[(i*3)+2].removeActionListener(this);
return true;
}
//this checks (from the left and right)
//for a taken spot, then a gap, then a taken one if(spots[i*3].getIcon().equals(a) &&
spots[(i*3)+2].getIcon().equals(a) &&
spots[(i*3)+1].getIcon().equals(blank))
{
spots[(i*3)+1].setIcon(blue);
spots[(i*3)+1].removeActionListener(this);
return true;
}
//this checks for 2 in a row from the right
if(spots[(i*3)+2].getIcon().equals(a) && spots[(i*3)+1].getIcon().equals(a) &&
spots[i*3].getIcon().equals(blank))
{
spots[i*3].setIcon(blue);
spots[i*3].removeActionListener(this);
return true;
}
//now we will check for a diagnol 2 in a row:
for(int j = 0; j <= 2; j+=2)
{
//this will check for diagnol X wins
if(spots[j].getIcon()= =a &&
spots[4].getIcon()= =a &&
spots[8−j].getIcon().equals(blank))
{
spots[8−j].setIcon(blue);
spots[8−j].removeActionListener(this);
return true;
}
//this checks (from a diagnol)
//for a taken spot, then a gap, then a taken one if(spots[j].getIcon()= =a &&
spots[8-j].getIcon()= =a &&
spots[4].getIcon().equals(blank))
{
spots[4].setIcon(blue);
spots[4].removeActionListener(this);
return true;
}
if(spots[8-j].getIcon()= =a &&
spots[4].getIcon()= =a &&
spots[j].getIcon().equals(blank))
{
spots[j].setIcon(blue);
125

spots[j].removeActionListener(this);
return true;
}
}
}
return false;
}
//starter (main) method:
public static void main(String[] args) {
TicTacToe ttt = new TicTacToe();
}
}
Figures 24-3 through 24-6 demonstrate Tic-
make Tic-Tac-Toe Boxing worth the price of
Tac-Toe Boxing’s incredible new AI!
admission.
Blood and gore. That’s what fighting fans pay to see. Next up, you’ll add the sounds and graphics to Figure 24-4
Player takes top left, computer takes
Project 24: Tic-Tac-Toe Boxing—Knock Out Figure 24-3 Boxing begins!
middle.
126

Project 25: Tic-Tac-Toe Boxing—Championship Figure 24-5
Player takes top middle, but is blocked
Figure 24-6
Player loses
(but don’t get too cocky,
by computer.
computer, a human programmed your brain!).
Project 25: Tic-Tac-Toe Boxing—Championship
Project
the constructor. The first AudioClip should contain a punching sound. Play the punching sound in the Want to make the frenzied crowd scream for
beginning of the actionPerformed method. This
their favorite boxer or boo the opponent? Want way, every time a user throws a punch, you hear a to have great displays showing a “Win,” “Lose,”
corresponding POW! The other two AudioClips
or “Draw?” Here you add audio clips and
should contain cheering and booing sounds. If the graphic images to make the boxing match come
player wins, sound the cheers. If he/she loses, it is to life.
time to release the boos!
Instead of having to repeat code each time a
Making the game
sound is played, create a new method called win.
It has two parameters: a boolean and a String. If Begin by adding the sound effects. Declare three the boolean is false, the game is a draw. If it is AudioClips globally, but initialize them inside of true, check whether the second parameter, a String, 127

contains “win” or “lose.” The correct message and sounds will be displayed.
Now, time to add some images. Standard pop-up
boxes that display the results can be dull. To liven things up, cover the entire boxing ring with a giant JLabel that announces the outcome of the fight, as shown in Figure 25-1.
To do this, create three JLabels to hold the
images: one called win, one called lose, and the last called draw. Add them to the container and set their bounds off screen. In the win method, move the images to the center of the screen. Don’t forget to remove the buttons using a for loop so they do not cover up the JLabel! You can remove buttons by using the following code:
container.remove(<button name>);
Your training is complete. You have now
Figure 25-1
JLabel displays outcome of fight.
mastered Tic-Tac-Toe Boxing.
//import everything:
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.applet.AudioClip;
import java.net.*;
//the class with the JFrame and the ActionListner: public class TicTacToe extends JFrame implements ActionListener
{
//this is an array of the buttons (spots). We use an array, not
//an arrayList because the number of buttons is constant; it does
//not change.
JButton spots[] = new JButton[9];
//this will keep track of turns
int turn = 1;
//this is a JLabel: it will display the text
JLabel lbl = new JLabel(new ImageIcon(“title.png”));
//this JLabel will display whose turn it is
JLabel turnLbl = new JLabel(“X’s Turn”);
ImageIcon red = new ImageIcon(“red.png”);
ImageIcon blue = new ImageIcon(“blue.png”);
ImageIcon blank = new ImageIcon(“blank.png”);
ImageIcon loseImg = new ImageIcon(“lose.png”); ImageIcon winImg = new ImageIcon(“win.png”);
ImageIcon drawImg = new ImageIcon(“draw.png”); JLabel lose = new JLabel(loseImg);
Project 25: Tic-Tac-Toe Boxing—Championship JLabel win = new JLabel(winImg);
128
Project 25: Tic-Tac-Toe Boxing—Championship JLabel draw = new JLabel(drawImg);
URL hitURL = null, cheerURL = null, booURL = null; AudioClip hit = null, cheer = null, boo = null; Container container;
//the constructor
public TicTacToe()
{
super(“TicTacToe: Boxing Style”);
setSize(450,700);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
//this will hold the buttons:
container = getContentPane();
//this will tell the computer how to display the buttons: container.setLayout(null);
//we will add the winning, losing, and draw labels, butt
//move them off the screen.
container.add(lose);
lose.setBounds(−500,−500,331,438);
container.add(win);
lose.setBounds(−500,−500,331,438);
container.add(draw);
lose.setBounds(−500,−500,331,438);
//add the lbl:
container.add(lbl);
lbl.setBounds(20,0,400,288);
try
{
hitURL = this.getClass().getResource(“hit.wav”); booURL = this.getClass().getResource(“boo.wav”); cheerURL = this.getClass().getResource(“cheer.wav”); hit = JApplet.newAudioClip(hitURL);
boo = JApplet.newAudioClip(booURL);
cheer = JApplet.newAudioClip(cheerURL);
}
catch(Exception e){ }
//before we can add the buttons to the container, we must
//initialize them. Use a for loop to do it:
int newLine = 0;
int lineCount = 0;
for(int i = 0; i < spots.length; i+ +)
{
//initialize it with a blank image
spots[i] = new JButton(blank);
//this checks whether to use a new row
if(i= =3 || i = =6)
{
newLine + +;
lineCount = 0;
}
//set the position of the button
spots[i].setBounds(75+(lineCount*100),300+(newLine*100),100,100);
//add it to the container
129
container.add(spots[i]);
//and now add the action listener:
spots[i].addActionListener(this);
lineCount+ +;
}
//add the JLabel that describes the turn
container.add(turnLbl);
turnLbl.setBounds(200,630,100,30);
container.setComponentZOrder(lose,0);
container.setComponentZOrder(win,0);
container.setComponentZOrder(draw,0);
//make sure everything is displayed:
container.repaint();
}
public void reset()
{
for(int i = 0; i < spots.length; i+ +)
{
spots[i].setIcon(blank);
spots[i].addActionListener(this);
}
turn = 1;
}
//the mandatory method:
public void actionPerformed(ActionEvent e)
{
hit.play();
try
{
Thread.sleep(600);
}
catch(Exception excep){ }
//this will check the button pressed:
for(int i = 0; i < spots.length; i+ +)
{
if(e.getSource()= =spots[i])
{
//set the button to X
spots[i].setIcon(red);
//now, change the JLabel that describes the player’s turn turnLbl.setText(“X’s (Red’s) Turn”);
//disable the btn so it can’t be re-pressed
spots[i].removeActionListener(this);
}
}
turn+ +;
//before letting the other player go, check whether a player won: Project 25: Tic-Tac-Toe Boxing—Championship checkWin();
130
Project 25: Tic-Tac-Toe Boxing—Championship
//this method lets the computer select its turn ai();
}
public void ai()
{
boolean movedYet;
//if this is the computer’s first turn, then try to go in the top left
//if already taken, take the middle
if(turn = = 2)
{
//if the top left is taken, take the middle
if(spots[0].getIcon().equals(red))
{
spots[4].setIcon(blue);
spots[4].removeActionListener(this);
movedYet = true;
}
//else, take the top left
else
{
spots[0].setIcon(blue);
spots[0].removeActionListener(this);
movedYet = true;
}
}
//if this is not the first turn, then check for 2 out of 3 spots
//taken. If there are none, go to a random location else
{
//callin this method checks for two in a row of the first String passed in.
//It then takes the 3rd spot with the 2nd String passed in: movedYet = twoInARow(blue);
//if the computer didn’t take an offensive spot, take a defensive
//one.
if(!movedYet)
{
movedYet = twoInARow(red);
//if there is no defensive move, take the next open one.
if(!movedYet)
{
//this loop finds the first untaken spot:
for(int i = 0; i < spots.length; i+ +)
{
//if empty, take it!
if(spots[i].getIcon().equals(blank))
{
spots[i].setIcon(blue);
spots[i].removeActionListener
(this);
movedYet = true;
break;
}
}
}
}
131
}
turn+ +;
System.out.println(turn);
checkWin();
if(!movedYet)
{
//if no spot was taken, it must be a cat’s game: win(false,“”);
}
}
public void win(boolean notADraw,String result)
{
//remove the jbuttons:
for(int i = 0; i < spots.length; i+ +)
{
container.remove(spots[i]);
}
//checks to see if is a win or a draw
if(notADraw)
{
if(result.equals(“win”))
{
//the player won:
cheer.play();
try
{
Thread.sleep(600);
}
catch(Exception excep){ }
win.setBounds(50,50,331,438);
}
else
{
//the computer won:
boo.play();
try
{
Thread.sleep(600);
}
catch(Exception excep){ }
lose.setBounds(50,50,331,438);;
reset();
return;
}
}
else
{
//a draw:
draw.setBounds(50,50,331,438);
}
}
public boolean twoInARow(Icon a)
{
for(int i = 0; i < 3; i+ +)
{
//this checks for 2 in a row from the top
if(spots[i].getIcon().equals(a) &&
Project 25: Tic-Tac-Toe Boxing—Championship spots[i+3].getIcon().equals(a) &&
132
Project 25: Tic-Tac-Toe Boxing—Championship spots[i+6].getIcon().equals(blank))
{
spots[i+6].setIcon(blue);
spots[i+6].removeActionListener(this);
return true;
}
//this checks (from the top and bottom)
//for a taken spot, then a gap, then a taken one: if(spots[i].getIcon().equals(a) &&
spots[i+6].getIcon().equals(a) &&
spots[i+3].getIcon().equals(blank))
{
spots[i+3].setIcon(blue);
spots[i+3].removeActionListener(this);
return true;
}
//this checks for 2 in a row from the bottom
if(spots[i+6].getIcon().equals(a) &&
spots[i+3].getIcon().equals(a) &&
spots[i].getIcon().equals(blank))
{
spots[i].setIcon(blue);
spots[i].removeActionListener(this);
return true;
}
//this checks for 2 in a row from the left
if(spots[i*3].getIcon().equals(a) &&
spots[(i*3)+1].getIcon().equals(a) &&
spots[(i*3)+2].getIcon().equals(blank))
{
spots[(i*3)+2].setIcon(blue);
spots[(i*3)+2].removeActionListener(this);
return true;
}
//this checks (from the left and right)
//for a taken spot, then a gap, then a taken one if(spots[i*3].getIcon().equals(a) &&
spots[(i*3)+2].getIcon().equals(a) &&
spots[(i*3)+1].getIcon().equals(blank))
{
spots[(i*3)+1].setIcon(blue);
spots[(i*3)+1].removeActionListener(this);
return true;
}
//this checks for 2 in a row from the right
if(spots[(i*3)+2].getIcon().equals(a) && spots[(i*3)+1].getIcon().equals(a) &&
spots[i*3].getIcon().equals(blank))
{
spots[i*3].setIcon(blue);
spots[i*3].removeActionListener(this);
return true;
}
//now we will check for a diagnol 2 in a row:
for(int j = 0; j <= 2; j+=2)
{
//this will check for diagnol X wins
if(spots[j].getIcon()= =a &&
spots[4].getIcon()= =a &&
133
spots[8-j].getIcon().equals(blank))
{
spots[8−j].setIcon(blue);
spots[8−j].removeActionListener(this);
return true;
}
//this checks (from a diagnol)
//for a taken spot, then a gap, then a taken one if(spots[j].getIcon()= =a &&
spots[8−j].getIcon()= =a &&
spots[4].getIcon().equals(blank))
{
spots[4].setIcon(blue);
spots[4].removeActionListener(this);
return true;
}
if(spots[8−j].getIcon()= =a &&
spots[4].getIcon()= =a &&
spots[j].getIcon().equals(blank))
{
spots[j].setIcon(blue);
spots[j].removeActionListener(this);
return true;
}
}
}
return false;
}
public void checkWin()
{
//first, we will use to go through three iterations. This allows us to
//check for both horizontal and vertical wins without using too
//much code:
for(int i = 0; i < 3; i+ +)
{
//this checks for a vertical X win
if(spots[i].getIcon().equals(red) &&
spots[i+3].getIcon().equals(red) &&
spots[i+6].getIcon().equals(red))
{
win(true,“win”);
reset();
return;
}
//this checks for a vertical O win
if(spots[i].getIcon().equals(blue) &&
spots[i+3].getIcon().equals(blue) &&
spots[i+6].getIcon().equals(blue))
{
win(true,”lose”);
reset();
return;
}
//this checks for a horizontal X win
if(spots[i*3].getIcon().equals(red) && spots[(i*3)+1].getIcon().equals(red) && spots[(i*3)+2].getIcon().equals(red))
{
win(true,“win”);
Project 25: Tic-Tac-Toe Boxing—Championship reset();
134
Project 25: Tic-Tac-Toe Boxing—Championship return;
}
//this checks for a horizontal O win
if(spots[i*3].getIcon().equals(blue) && spots[(i*3)+1].getIcon().equals(blue) && spots[(i*3)+2].getIcon().equals(blue))
{
win(true,“lose”);
reset();
return;
}
}
//now, this loop will check for diagnol wins
for(int i = 0; i <= 2; i+=2)
{
//this will check for diagnol X wins
if(spots[i].getIcon().equals(red) &&
spots[4].getIcon().equals(red) &&
spots[8−i].getIcon().equals(red))
{
win(true,“win”);
reset();
return;
}
//this will check for diagnol O wins
if(spots[i].getIcon().equals(blue) &&
spots[4].getIcon().equals(blue) &&
spots[8−i].getIcon().equals(blue))
{
win(true,“lose”);
reset();
return;
}
}
}
//starter (main) method:
public static void main(String[] args) {
TicTacToe ttt = new TicTacToe();
}
}
Figures 25-2 through 25-5 shows Tic-Tac-Toe
them to simulate body blows; record your doorbell Boxing’s attention-grabbing GUI!
ringing to signal the next round.
Expand the 3 by 3 boxing ring into a 4 by
4 space requiring more complicated moves.
Customizing the game
If you really want a challenge, modify the
boxing ring into a three dimensional space with Customize the images: you can turn the gloves
multiple fighters.
into full boxing figures, growling faces ...
Allow the user to select various difficulty levels.
anything!
Play ten rounds against the computer: the
Customize the sounds: punch pillows, jump on
catch—the computer progresses in intelligence
empty plastic bottles, blow up balloons and pop after each round.
135

Figure 25-2
Although you cannot hear it, trust me, a
Figure 25-3
Player loses.
punching sound just played.
Project 25: Tic-Tac-Toe Boxing—Championship Figure 25-4 Match ends in draw!
Figure 25-5
KNOCK OUT! Player wins!
136
Section Four
Shoot ‘em up Games
Project 26: Snake Pit—The Arena
<color> can be any you choose. The option to select a color pops up after you type the period.
Snake Pit
Figure 26-1 illustrates a new background color.
You can also set the color of the text of a JLabel Two snakes. One mouse. Venom flying
by using the command:
everywhere! Snake Pit is a classic “shoot ‘em up”
lbl.setForeground(Color.<color>);
game in which you must prevent your opponent
from capturing prey as you avoid being hit by
his/her poisonous venom.
Making the game
To begin, create a JFrame that is 800 by
600 pixels. Next, set the background color of the Project
JFrame to black.
Now that you have the arena set, add the two
Create the snake pit.
snakes. Create two ImageIcons per snake—one of the basic snake (Figure 26-2); the other, of the New building blocks
snake being hit by venom (Figure 26-3).
Component Color, JLabel Font
Initialize a JLabel for the two snakes and assign the snake’s basic image to it (you will use the second ImageIcon later when you create venom).
Component color
Use the setBounds method to center each snake on the far left and far right sides of the pit. Then, use When using a Container, you can easily set the a JLabel to add the image of a mouse to the center color of the background of any component, such as of the screen. Now, create two JLabels to represent a JFrame, by using the command:
the score of each snake. Remember to set the
cont.setBackground(Color.<color>);
JLabels’ fonts to white so the scores can be seen against the dark background of the arena.
137

Figure 26-1
JFrame with black background.
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
public class SnakePit extends JFrame
{
//these variable will help to determine when the
//ball leaves the screen
int width = 800;
int height = 600;
//the two scores and the JLabels to show them: Project 26: Snake Pit—The Arena Figure 26-2 Basic snake.
Figure 26-3
Snake struck by venom.
138

Project 26: Snake Pit—The Arena
int scoreLeft = 0;
int scoreRight = 0;
JLabel left = new JLabel(“Score: “+scoreLeft); JLabel right = new JLabel(“Score: “+scoreRight);
//SNAKE ICONS:
ImageIcon snakeLeftImg = new ImageIcon(“snakeLeft.PNG”); ImageIcon snakeRightImg = new ImageIcon(“snakeRight.PNG”); ImageIcon snakeLeftHit = new ImageIcon(“snakeLeftHit.PNG”); ImageIcon snakeRightHit = new ImageIcon(“snakeRightHit.PNG”);
//these are the snake JLabels
JLabel snakeLeft = new JLabel(snakeLeftImg);
JLabel snakeRight = new JLabel(snakeRightImg); JLabel food = new JLabel(new ImageIcon(“food.PNG”)); JLabel venomRight = new JLabel(new ImageIcon(“venomRight.png”)); JLabel venomLeft = new JLabel(new ImageIcon(“venomLeft.png”));
//global container:
Container cont;
public SnakePit()
{
//create the JFrame...
super(“Snake Pit”);
setVisible(true);
setSize(width,height);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
//this is the container:
cont = getContentPane();
Figure 26-4
Snake Pit Arena.
139
cont.setLayout(null);
cont.setBackground(Color.BLACK);
//add the score labels:
cont.add(left);
left.setBounds(50,50,100,30);
left.setForeground(Color.WHITE);
cont.add(right);
right.setBounds(width−150,50,100,30);
right.setForeground(Color.WHITE);
//set the layout to null
cont.setLayout(null);
//add the two snakes and set their bounds to the correct positions cont.add(snakeLeft);
snakeLeft.setBounds(50,height/2,30,200);
cont.add(snakeRight);
snakeRight.setBounds(width−80,height/2,30,200);
//now, add the food (the mouse), and put it in the center cont.add(food);
food.setBounds(width/2,height/2,30,30);
}
public static void main (String[] args)
{
new SnakePit();
}
}
Figure 26-4 illustrates the snake pit.
You will also make the mouse flee
Slither forward, snakes! Go on to bring
for its life.
the snakes to life by adding a KeyListener.
Project 27: Snake Pit—Snake Bait
Project
Component movement
One of the key features of Snake Pit is making the Moving components is easy to do in Java.
snakes move so they can sink their fangs into their Remember that setBounds method?
bait—a bouncing mouse. You accomplish this by
Use the same method to move components.
using a KeyListener. Careful, those snakes are All you do is create a Thread and an infinite
getting hungry!
loop to set the bounds of the component during each iteration. For example, if you want a
New building blocks
component to move to the right, use the
following code, which should be inserted into
Component Movement, Component Collision
the loop:
Project 27: Snake Pit—Snake Bait Detection 140

Project 27: Snake Pit—Snake Bait
component.setBounds(component.getX()+1,
component.getY(), <width>, <height>); The getX() and getY() methods return the
component’s current X and Y positions,
respectively.
Component collision detection
Collision detection with components
can be written in one simple condition. For this example, c1 and c2 are the names of the two
components.
c1.getBounds().intersects(c2.getBounds)
Figure 27-1
Collision detection.
The above code checks for the situation
illustrated in Figure 27-1.
multiplying the y velocity by −1. If the mouse Making the game
tries to exit the arena in the x direction
(horizontally), add one point to the opposing
Create a Thread and add a KeyListener to it. Then, snake’s score (Note: scoring is based upon
create two global variables that represent the preventing your opponent from capturing prey and, velocity of the food in the x and y directions.
as you’ll soon see, striking the opposing snake Set each variable to 1. Within the thread’s infinite with venom). If one of the snakes is able to capture loop, use setBounds to move the food by the
the mouse, make the mouse bounce by multiplying velocity variables, as shown below:
the x velocity by −1.
food.setBounds(food.getX()+velX,
Now, use the thread’s KeyListener to add user
food.getY()+velY, 30, 30);
movement. When the “w” key is pressed, use the Now, use your new collision detection
setBounds method to move the left snake up.
skills to make the mouse bounce around the arena.
When “s” is pressed, move the left snake down.
If the mouse tries to exit in the y direction
The right snake will be controlled by AI, which (vertically), make the mouse ricochet by
you will program in the next project.
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
public class SnakePit extends JFrame
{
//these two arraylists will hold the labels that represent the bullets ArrayList bulletsLeft = new ArrayList();
ArrayList bulletsRight = new ArrayList();
//this array will hold both arraylists
ArrayList[] bullets = {bulletsLeft, bulletsRight}; 141
//these variable will help to determine when the
//ball leaves the screen
int width = 800;
int height = 600;
//the two scores and the JLabels to show them: int scoreLeft = 0;
int scoreRight = 0;
JLabel left = new JLabel(“Score: “+scoreLeft); JLabel right = new JLabel(“Score: “+scoreRight);
//SNAKE ICONS:
ImageIcon snakeLeftImg = new ImageIcon(“snakeLeft.PNG”); ImageIcon snakeRightImg = new ImageIcon(“snakeRight.PNG”); ImageIcon snakeLeftHit = new ImageIcon(“snakeLeftHit.PNG”); ImageIcon snakeRightHit = new ImageIcon(“snakeRightHit.PNG”);
//these are the snake JLabels
JLabel snakeLeft = new JLabel(snakeLeftImg);
JLabel snakeRight = new JLabel(snakeRightImg); JLabel food = new JLabel(new ImageIcon(“food.PNG”)); JLabel venomRight = new JLabel(new ImageIcon(“venomRight.png”)); JLabel venomLeft = new JLabel(new ImageIcon(“venomLeft.png”));
//these variables represent how much the food moves
//in the x and y directions:
int foodX = 1;
int foodY = 1;
//global container:
Container cont;
public SnakePit()
{
//create the JFrame...
super(“Snake Pit”);
setVisible(true);
setSize(width,height);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
//this is the container:
cont = getContentPane();
cont.setLayout(null);
cont.setBackground(Color.black);
//add the score labels:
cont.add(left);
left.setBounds(50,50,100,30);
left.setForeground(Color.WHITE);
cont.add(right);
right.setBounds(width−150,50,100,30);
right.setForeground(Color.WHITE);
//add the two snakes and set their bounds to the correct positions cont.add(snakeLeft);
snakeLeft.setBounds(50,height/2,30,200);
cont.add(snakeRight);
snakeRight.setBounds(width−80,height/2,30,200);
//now, add the food (the mouse), and put it in the center cont.add(food);
food.setBounds(width/2,height/2,30,30);
//the thread for the snakes
SnakeThread st = new SnakeThread();
st.start();
Project 27: Snake Pit—Snake Bait
142
Project 27: Snake Pit—Snake Bait
}
//the thread:
public class SnakeThread extends Thread implements KeyListener
{
public void run()
{
addKeyListener(this);
while(true)
{
try
{
//if the food hits the left or right sides...
if(food.getX()<0 || food.getX()>width)
{
//then reset the ball and add a point to the correct player food.setBounds(width/2,height/2,30,30);
foodX = 1;
foodY = 1;
if(food.getX()<0)
{
scoreLeft+ +;
}
else
{
scoreRight+ +;
}
left.setText(“Score: “+scoreLeft);
right.setText(“Score: “+scoreRight);
}
//if the food goes too high or low, make it bounce else if(food.getY()>height−30 || food.getY()<0)
{
foodY *= −1;
}
//if the paddle is hit
else if((food.getX()<80 && food.getY()>snakeLeft.getY() && food.getY()<snakeLeft.getY()+200) || (food.getX()>width−80 && food.getY()>snakeRight.getY() && food.getY()<snakeRight.getY()+200))
{
foodX *= −1;
}
//move the food
food.setBounds(food.getX()−foodX, food.getY()−foodY,30,30);
//the refresh delay
Thread.sleep(4);
}
catch(Exception e){ }
}
}
//you must also implement this method from KeyListener public void keyPressed(KeyEvent event)
{
if(event.getKeyChar()==’w’)
{
snakeLeft.setBounds(snakeLeft.getX(),snakeLeft.getY()−10,30,200);
}
if(event.getKeyChar()==’s’)
{
143

snakeLeft.setBounds(snakeLeft.getX(),snakeLeft.getY()+10,30,200);
}
}
//you must also implement this method from KeyListener public void keyReleased(KeyEvent event){ }
//you must also implement this method from KeyListener public void keyTyped(KeyEvent event){ }
}
public static void main (String[] args)
{
new SnakePit();
}
}
Figures 27-2 through 27-4 display primary
opponent with AI. And to make things even more actions in the snake pit.
interesting, you’ll add code that allows the two You’re all alone and suddenly overcome with the snakes to spit deadly venom at one another while urge to play Snake Pit. What do you do? Create an mouse hunting.
Figure 27-2
Arena.
Project 27: Snake Pit—Snake Bait
144

Project 27: Snake Pit—Snake Bait
Figure 27-3
Snake is hungry.
Figure 27-4
One mouse gone, next mouse up!
145
Project 28: Snake Pit—Snake Bite!
Project
if-statement should check if the mouse is lower than the right snake. If so, move the right snake With AI, turn your computer into an adversary that down. Both of these if statements belong in the cannot be defeated. Also, you will implant venom infinite loop inside of the thread.
glands into the snakes that allows them to spit out Now, it’s time to add venom glands to the snake.
the deadly poison!
To do this, create two ArrayLists: each one should hold the JLabels that represent the venom from Making the game
each snake. In addition, to cut down on the
repetition of your code, add both of the ArrayLists First, you will add AI to the snake on the right side to an array. When the “q” key is pressed, add a of the arena. The AI is very simple; in fact, it can new JLabel to the container and to the ArrayList.
be programmed with only two if-statements. The Next, create another thread. This one should
first if-statement should check to see if the mouse control the AI’s firing of venom. In the infinite is higher than the right snake. If so, move the right loop, go through both ArrayLists and move the
snake up using the setBounds method. The second JLabels in the appropriate direction.
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
public class SnakePit extends JFrame
{
//these two arraylists will hold the labels that represent the bullets ArrayList bulletsLeft = new ArrayList();
ArrayList bulletsRight = new ArrayList();
//this array will hold both arraylists
ArrayList[] bullets = {bulletsLeft, bulletsRight};
//these variable will help to determine when the
//ball leaves the screen
int width = 800;
int height = 600;
//the two scores and the JLabels to show them: int scoreLeft = 0;
int scoreRight = 0;
JLabel left = new JLabel(“Score: “+scoreLeft); JLabel right = new JLabel(“Score: “+scoreRight);
//SNAKE ICONS:
ImageIcon snakeLeftImg = new ImageIcon(“snakeLeft.PNG”); ImageIcon snakeRightImg = new ImageIcon(“snakeRight.PNG”); ImageIcon snakeLeftHit = new ImageIcon(“snakeLeftHit.PNG”); ImageIcon snakeRightHit = new ImageIcon(“snakeRightHit.PNG”);
//these are the snake JLabels
JLabel snakeLeft = new JLabel(snakeLeftImg);
JLabel snakeRight = new JLabel(snakeRightImg); Project 28: Snake Pit—Snake Bite!
JLabel food = new JLabel(new ImageIcon(“food.PNG”)); 146
Project 28: Snake Pit—Snake Bite!
JLabel venomRight = new JLabel(new ImageIcon(“venomRight.png”)); JLabel venomLeft = new JLabel(new ImageIcon(“venomLeft.png”));
//these variables represent how much the food moves
//in the x and y directions:
int foodX = 1;
int foodY = 1;
//global container:
Container cont;
public SnakePit()
{
//create the JFrame...
super(“Snake Pit”);
setVisible(true);
setSize(width,height);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
//this is the container:
cont = getContentPane();
cont.setLayout(null);
cont.setBackground(Color.BLACK);
//add the score labels:
cont.add(left);
left.setFont(new Font(“Times New Roman”, Font.BOLD, 20)); left.setBounds(50,50,100,30);
left.setForeground(Color.WHITE);
cont.add(right);
right.setFont(new Font(“Times New Roman”, Font.BOLD, 20)); right.setBounds(width−150,50,100,30);
right.setForeground(Color.WHITE);
//add the two snakes and set their bounds to the correct positions cont.add(snakeLeft);
snakeLeft.setBounds(50,height/2,30,200);
cont.add(snakeRight);
snakeRight.setBounds(width−80,height/2,30,200);
//now, add the food (the mouse), and put it in the center cont.add(food);
food.setBounds(width/2,height/2,30,30);
//the thread for the snakes
SnakeThread st = new SnakeThread();
st.start();
//this thread will control the intervals of the enemy’s attack Attack attack = new Attack();
attack.start();
}
public class Attack extends Thread
{
public void run()
{
while(true)
{
try
{
int interval = (int)(Math.random()*2000);
Thread.sleep(interval);
bulletsRight.add(venomRight);
cont.add(venomRight);
cont.setComponentZOrder(venomRight,0);
venomRight.setBounds(snakeRight.getX()−30,snakeRight.getY()+30,20,10); 147
}
catch(Exception e){ }
}
}
}
//the thread:
public class SnakeThread extends Thread implements KeyListener
{
public void run()
{
addKeyListener(this);
while(true)
{
try
{
//move the bullets
//this for loop goes through the two arraylists for(int i = 0; i <bullets.length; i++)
{
int distance = 0;
if(i= =0)
distance = 1;
else
distance = −1;
for(int j = 0; j < bullets[i].size(); j+ +)
{
JLabel temp = ((JLabel)bullets [i].get(j));
((JLabel)bullets[i].get(j)).setBounds(
temp.getX()+distance,temp.getY(),20,10);
}
}
//if the food hits the left or right sides...
if(food.getX()<0 || food.getX()>width)
{
//then reset the ball and add a point to the correct player food.setBounds(width/2,height/2,30,30);
foodX = 1;
foodY = 1;
if(food.getX()<0)
{
scoreLeft+ +;
}
else
{
scoreRight+ +;
}
left.setText(“Score: “+scoreLeft);
right.setText(“Score: “+scoreRight);
}
//if the food goes too high or low, make it bounce else if(food.getY()>height−30 || food.getY()<0)
{
foodY *= −1;
}
//if the paddle is hit
else if((food.getX()<80 && food.getY()>snakeLeft.getY()
&&food.getY()<snakeLeft.getY()+200) ||(food.getX()>width−80
&&food.getY()>snakeRight.getY() &&food.getY()<snakeRight.getY()+200))
{
Project 28: Snake Pit—Snake Bite!
foodX *= −1;
148
Project 28: Snake Pit—Snake Bite!
}
//move the food
food.setBounds(food.getX()−foodX, food.getY()−foodY,30,30);
//this code controls the AI. If the food is higher
//than the computer’s paddle, move up. If not, move down.
if(food.getY()>snakeRight.getY()+200)
{
snakeRight.setBounds(snakeRight.getX(),snakeRight.getY()+4,30,200);
}
if(food.getY()<snakeRight.getY())
{
snakeRight.setBounds(snakeRight.getX(),snakeRight.getY()−4,30,200);
}
//the refresh delay
Thread.sleep(4);
}
catch(Exception e){ }
}
}
//you must also implement this method from KeyListener public void keyPressed(KeyEvent event)
{
if(event.getKeyChar()= =’w’)
{
snakeLeft.setBounds(snakeLeft.getX(),snakeLeft.getY()−10,30,200);
}
if(event.getKeyChar()= =’s’)
{
snakeLeft.setBounds(snakeLeft.getX(),snakeLeft.getY()+10,30,200);
}
if(event.getKeyChar()= =’q’)
{
bulletsLeft.add(venomLeft);
cont.add(venomLeft);
cont.setComponentZOrder(venomLeft,0);
venomLeft.setBounds(snakeLeft.getX()+30,snakeLeft.getY()+30,20,10);
}
}
//you must also implement this method from KeyListener public void keyReleased(KeyEvent event){ }
//you must also implement this method from KeyListener public void keyTyped(KeyEvent event){ }
}
public static void main (String[] args)
{
new SnakePit();
}
}
Figures 28-1 and 28-2 display the venom battle.
their venom. When one of these nasty creatures Chaos is about to unfold! In the next project, gets hit, not only will the score change, but the you will track collisions between the snakes and injured snake will wither in pain.
149

Figure 28-1
Player fires venom!
Project 28: Snake Pit—Snake Bite! Figure 28-2 AI spits back.
150
Project 29: Snake Pit—King Cobra
Project 29: Snake Pit—King Cobra
Project
When you type the period, options pop-up. Choose one of the uppercase choices, such as “BOLD” or Stand back! You’re about to make the snakes recoil
“NORMAL.”
when stricken and create a scoring system to keep track of venom hits. And there’s more – you’ll add Making the game
a background image to the pit.
New building blocks
Add if-statements in the loops that move the
venom to check for a collision between the venom Font
and the snakes. If there is a collision, change the score accordingly.
Font
Remember when you created that ImageIcon of
the snakes being attacked? Finally, it is time to use You can easily change the font of JLabels. Simply it! Set the JLabel’s icon to that image for
use the following code:
100 milliseconds. Then, add a background image by creating another ImageIcon and a JLabel. You lbl.setFont(new Font(“”,
can also change the font of the score JLabels to
, <size>));
make them contrast against the background.
 is the name of the font, such as You can even add a small delay to the game before
“Times New Roman” or “Arial.”
the mouse starts moving so the player has a
<
moment to prepare for the attack.
font type> give you options: bold,
underlined, etc. To select the type, enter “Font.”
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
public class SnakePit extends JFrame
{
//these two arraylists will hold the labels that represent the bullets ArrayList bulletsLeft = new ArrayList();
ArrayList bulletsRight = new ArrayList();
//this array will hold both arraylists
ArrayList[] bullets = {bulletsLeft, bulletsRight};
//these variable will help to determine when the
//ball leaves the screen
int width = 800;
int height = 600;
//the two scores and the JLabels to show them: int scoreLeft = 0;
int scoreRight = 0;
JLabel left = new JLabel(“Score: “+scoreLeft); JLabel right = new JLabel(“Score: “+scoreRight); 151
//SNAKE ICONS:
ImageIcon snakeLeftImg = new ImageIcon(“snakeLeft.PNG”); ImageIcon snakeRightImg = new ImageIcon(“snakeRight.PNG”); ImageIcon snakeLeftHit = new ImageIcon(“snakeLeftHit.PNG”); ImageIcon snakeRightHit = new ImageIcon(“snake RightHit.PNG”);
//these are the snake JLabels
JLabel snakeLeft = new JLabel(snakeLeftImg);
JLabel snakeRight = new JLabel(snakeRightImg); JLabel food = new JLabel(new ImageIcon(“food.PNG”)); JLabel venomRight = new JLabel(new ImageIcon(“venomRight.png”)); JLabel venomLeft = new JLabel(new ImageIcon (“venomLeft.png”));
//these variables represent how much the food moves
//in the x and y directions:
int foodX = 1;
int foodY = 1;
//global container:
Container cont;
public SnakePit()
{
//create the JFrame...
super(“Snake Pit”);
setVisible(true);
setSize(width,height);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
//this is the container:
cont = getContentPane();
cont.setLayout(null);
//add the score labels:
cont.add(left);
left.setFont(new Font(“Times New Roman”, Font.BOLD, 20)); left.setBounds(50,50,100,30);
left.setForeground(Color.WHITE);
cont.add(right);
right.setFont(new Font(“Times New Roman”, Font.BOLD, 20)); right.setBounds(width−150,50,100,30);
right.setForeground(Color.WHITE);
//set the layout to null
cont.setLayout(null);
//add the two snakes and set their bounds to the correct positions cont.add(snakeLeft);
snakeLeft.setBounds(50,height/2,30,200);
cont.add(snakeRight);
snakeRight.setBounds(width−80,height/2,30,200);
//now, add the food (the mouse), and put it in the center cont.add(food);
food.setBounds(width/2,height/2,30,30);
//the thread for the snakes
SnakeThread st = new SnakeThread();
st.start();
//this thread will control the intervals of the enemy’s attack Attack attack = new Attack();
attack.start();
//set the background of the container with an image JLabel background = new JLabel(new ImageIcon(“background.PNG”)); cont.add(background);
Project 29: Snake Pit—King Cobra
background.setBounds(0,0,800,600);
152
Project 29: Snake Pit—King Cobra
}
public class Attack extends Thread
{
public void run()
{
while(true)
{
try
{
int interval = (int)(Math.random()*2000);
Thread.sleep(interval);
bulletsRight.add(venomRight);
cont.add(venomRight);
cont.setComponentZOrder(venomRight,0);
venomRight.setBounds(snakeRight.getX()−30, snakeRight.getY()+30,20,10);
}
catch(Exception e){ }
}
}
}
//the thread:
public class SnakeThread extends Thread implements KeyListener
{
public void run()
{
try
{
Thread.sleep(2000);
}
catch(Exception e){ }
addKeyListener(this);
while(true)
{
try
{
//move the bullets
//this for loop goes through the two arraylists for(int i = 0; i <bullets.length; i++)
{
int distance = 0;
if(i= =0)
distance = 1;
else
distance = −1;
for(int j = 0; j <bullets[i].size(); j+ +)
{
JLabel temp = ((JLabel)bullets[i].get(j));
//check for collisions between the snakes and bullets if(i= =0)
{
if(snakeRight.getBounds().intersects(temp.getX(),temp.getY(),20,10))
{
snakeRight.setIcon(snakeRightHit);
scoreLeft+ +;
left.setText(“Score: “+scoreLeft);
bullets[i].remove(j);
Thread.sleep(100);
snakeRight.setIcon(snakeRightImg);
}
}
153
else
{
if(snakeLeft.getBounds().intersects(temp.getX(),temp.getY(),20,10))
{
snakeLeft.setIcon(snakeLeftHit);
scoreRight+ +;
right.setText(“Score: “+scoreRight);
bullets[i].remove(j);
Thread.sleep(100);
snakeLeft.setIcon(snakeLeftImg);
}
}
((JLabel)bullets[i].get(j)).setBounds(temp.getX()+distance,temp.getY(),20,10);
}
}
//if the food hits the left or right sides...
if(food.getX()<0 || food.getX()>width)
{
//then reset the ball and add a point to the correct player food.setBounds(width/2,height/2,30,30);
foodX = 1;
foodY = 1;
if(food.getX()<0)
{
scoreLeft+ +;
}
else
{
scoreRight+ +;
}
left.setText(“Score: “+scoreLeft);
right.setText(“Score: “+scoreRight);
}
//if the food goes too high or low, make it bounce else if(food.getY()>height−30 || food.getY()<0)
{
foodY *= −1;
}
//if the paddle is hit
else if((food.getX()<80 && food.getY()>snakeLeft.getY()
&&food.getY()<snakeLeft.getY()+200) ||(food.getX()>width−80
&&food.getY()>snakeRight.getY() &&food.getY()<snakeRight.getY()+200))
{
foodX *= −1;
}
//move the food
food.setBounds(food.getX()−foodX, food.getY()−foodY,30,30);
//this code controls the AI. If the food is higher
//than the computer’s paddle, move up. If not, move down.
if(food.getY()>snakeRight.getY()+200)
{
snakeRight.setBounds(snakeRight.getX(),snakeRight.getY()+4,30,200);
}
if(food.getY()<snakeRight.getY())
{
snakeRight.setBounds(snakeRight.getX(),snakeRight.getY()−4,30,200);
}
//the refresh delay
Thread.sleep(4);
Project 29: Snake Pit—King Cobra
154
Project 29: Snake Pit—King Cobra
}
catch(Exception e){ }
}
}
//you must also implement this method from KeyListener public void keyPressed(KeyEvent event)
{
if(event.getKeyChar()= =’w’)
{
snakeLeft.setBounds(snakeLeft.getX(),snakeLeft.getY()−10,30,200);
}
if(event.getKeyChar()= =’s’)
{
snakeLeft.setBounds(snakeLeft.getX(),snakeLeft.getY()+10,30,200);
}
if(event.getKeyChar()= =’q’)
{
bulletsLeft.add(venomLeft);
cont.add(venomLeft);
cont.setComponentZOrder(venomLeft,0);
venomLeft.setBounds(snakeLeft.getX()+30,snakeLeft.getY()+30,20,10);
}
}
//you must also implement this method from KeyListener public void keyReleased(KeyEvent event){ }
//you must also implement this method from KeyListener public void keyTyped(KeyEvent event){ }
}
public static void main (String[] args)
{
new SnakePit();
}
}
Figures 29-1 through 29-3 illustrate the vicious Add another mouse—double food!
snake fight.
Substitute a mongoose for the mouse—if it
collides with the snake, the snake dies!
Customizing the game
Create power-ups: freeze your opponent for
several seconds.
Vary the speed of the snakes and mouse: faster, Dual-wielding: shoot several venomous shots at slower, or randomly changing.
once.
Give the snake the ability to spit venom like a Change the snakes into scorpions and have them machine gun.
shoot stingers instead of venom.
Add two more snakes to the top and bottom of
the arena.
155

Figure 29-1
Creative background image.
Project 29: Snake Pit—King Cobra Figure 29-2 Snake recoils from venom spit.
156

Project 30: Space Destroyers—The Landscape
Figure 29-3
Player is winning!
Project 30: Space Destroyers—The Landscape
MouseMotionListener
Space Destroyers
The MouseMotionListener does exactly what is
Planet Earth is being invaded. You will design and says: it listens for the mouse’s movements. Just command a military spaceship to destroy the
like the ActionListener and the KeyListener, the aliens. Your arsenal of weapons includes plasma MouseMotionListener has two mandatory
machine guns, health packs, and reflector beams.
methods:
Save our planet!
public void mouseMoved(MouseEvent event)
and
Project
public void mouseDragged(MouseEvent event)
Create the landscape and the spacecraft.
To get the X position of the cursor, use:
event.getX()
New building blocks
To get the Y position, use:
MouseMotionListener
event.getY()
157

JLabel and set the ImageIcon of the basic
Making the game
spaceship to it.
Add a MouseMotionListener to the class. In
Start making the game by creating a JFrame that is mouseMoved, use the spaceship’s setBounds
500 by 700 pixels. Set the background color to method to move the spaceship to the location of black. For the military spaceship, create two
the cursor.
ImageIcons: one of the basic spaceship; the other of the spaceship damaged. Then, create a
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
public class SpaceDestroyers extends JFrame implements MouseMotionListener
{
//this holds the components
Container cont;
//these are the ship’s images
ImageIcon shipImg = new ImageIcon(“ship.PNG”); ImageIcon shipHit = new ImageIcon(“shipHit.PNG”);
//this is the player’s ship
JLabel ship = new JLabel(shipImg);
Project 30: Space Destroyers—The Landscape Figure 30-1 Spaceship ready for action!
158

Project 30: Space Destroyers—The Landscape
public SpaceDestroyers()
{
super(“Space Destroyers”);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); setSize(500,700);
cont = getContentPane();
cont.setLayout(null);
//set the background color
cont.setBackground(Color.BLACK);
cont.add(ship);
ship.setBounds(225, 550,50,50);
addMouseMotionListener(this);
setContentPane(cont);
}
public void mouseMoved(MouseEvent event)
{
ship.setBounds(event.getX()−25,event.getY()−40,50,50);
}
public void mouseDragged(MouseEvent event){ }
public static void main (String[] args)
{
new SpaceDestroyers();
}
}
Figure 30-2
Spaceship follows cursor.
159

Figures 30-1 and 30-2 illustrate the spaceship Move on to add weapons to your spaceship. But
and its initial movement.
what’s the point of weapons if there is no target?
That’s why you will also be creating those
threatening aliens.
Project 31: Space Destroyers—Lasers
Project
Add the basic alien image to a JLabel. Next,
create two variables: level and numOfEnemies.
Who better than an Evil Genius to create evil
The number of enemies should correspond to the aliens? But first, you will add lasers to your square of each level (e.g. the second level should spaceship to give mankind a fighting chance.
have 22, 4 enemies; the third, 32, 9 enemies). In the constructor, use a loop to initialize the enemies. In the infinite while loop, move the aliens downward.
Making the game
Now, make an ArrayList to hold the aliens. Create an if-statement to check the number of enemies Create an ImageIcon and JLabel for the ship’s
still viable. If it is 0, increment level by 1 and lasers. Go on and make an ArrayList to store all of re-add the aliens to the screen and the ArrayList.
the lasers shot by the spaceship (you have already To make life easier, you can also create a method practiced this technique in Project 28, the Snake that populates the ArrayList. Also, don’t forget to Pit game). Once the ArrayList is complete, add a have the aliens reappear on the top of the screen KeyListener to determine when to fire the lasers.
after disappearing offscreen!
When the space bar is pressed, add the laser to both the content pane and the ArrayList. After creating a Important: check for collisions between the
thread and an infinite loop, use a
ship’s lasers and the aliens in the infinite loop. If a for loop and the
setBounds method to shoot the lasers upward.
collision occurs, remove the aliens and the laser.
And remember to set the alien’s icon to the
Now it’s time to create the aliens. Make two
damaged image before removing it.
ImageIcons: one of a basic alien (see Figure 31-1) and one of a damaged alien (see Figure 31-2).
Project 31: Space Destroyers—Lasers Figure 31-1 Basic alien.
Figure 31-2
Damaged alien.
160
Project 31: Space Destroyers—Lasers
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
public class SpaceDestroyers extends JFrame implements KeyListener,MouseMotionListener
{
//this holds the components
Container cont;
//this is the current level:
int currentLevel = 1;
//this is the number of enemies:
int numOfEnemies = 1;
//this is the bullet’s image:
ImageIcon shipBullet = new ImageIcon (“shipBullet.PNG”);
//this holds the player’s bullets
ArrayList playerBullets = new ArrayList();
//this holds the enemies
ArrayList enemies = new ArrayList();
//these are the ship’s images
ImageIcon shipImg = new ImageIcon(“ship.PNG”); ImageIcon shipHit = new ImageIcon(“shipHit.PNG”);
//these are the images of the enemies
ImageIcon enemyImg = new ImageIcon (“enemy.PNG”); ImageIcon enemyHit = new ImageIcon (“enemyHit.PNG”);
//this is the player’s ship
JLabel ship = new JLabel(shipImg);
public SpaceDestroyers()
{
super(“Space Destroyers”);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); setSize(500,700);
cont = getContentPane();
cont.setLayout(null);
//set the background color
cont.setBackground(Color.BLACK);
cont.add(ship);
ship.setBounds(225, 550,50,50);
addKeyListener(this);
addMouseMotionListener(this);
populateEnemies();
Play play= new Play();
play.start();
setContentPane(cont);
}
public void populateEnemies()
{
for(int i = 0; i <= numOfEnemies; i+ +)
{
JLabel tempEnemy = new JLabel(enemyImg);
int randLocation = (int)(Math.random()*500);
enemies.add(tempEnemy);
161
cont.add((JLabel)(enemies.get(i)));
tempEnemy.setBounds(randLocation,10,30,30);
cont.setComponentZOrder(((JLabel)(enemies.get(i))),0);
}
}
public class Play extends Thread
{
public void run()
{
while(true)
{
try
{
for(int i = 0; i < enemies.size(); i++)
{
JLabel tempEnemy = (JLabel)(enemies.get(i));
int distance = (int)(Math.random()*2);
tempEnemy.setBounds(tempEnemy.getX(),tempEnemy.getY()+distance,30,30); if(tempEnemy.getBounds().intersects(ship.getBounds()))
{
cont.remove(tempEnemy);
}
if(tempEnemy.getY()>550)tempEnemy.setBounds(tempEnemy.getX(), 10, 30, 30);
}
//chack if the player’s bullets hit the aliens boolean breakAll = false;
for(int i = 0; i < playerBullets.size(); i+ +)
{
JLabel temp = ((JLabel)(playerBullets.get(i))); temp.setBounds(temp.getX(),temp.getY()−8,10,20); if(temp.getY()<0)
{
cont.remove(temp);
playerBullets.remove(i);
ι− −;
}
for(int j = 0; j < enemies.size(); j+ +)
{
JLabel tempEnemy = (JLabel)(enemies.get(j));
if(temp.getBounds().intersects(tempEnemy.getBounds()))
{
tempEnemy.setIcon(enemyHit);
Thread.sleep(100);
enemies.remove(j);
cont.remove(tempEnemy);
numOfEnemies—;
if(numOfEnemies<=0)
{
currentLevel+ +;
numOfEnemies = currentLevel * currentLevel;
populateEnemies();
breakAll = true;
break;
}
}
}
if(breakAll)
break;
}
Project 31: Space Destroyers—Lasers
162

Project 31: Space Destroyers—Lasers
cont.repaint();
Tread.sleep(10);
}
catch(Exception e){ }
}
}
}
public void mouseMoved(MouseEvent event)
{
ship.setBounds(event.getX()−25,event.getY()−40,50,50);
}
public void mouseDragged(MouseEvent event){ }
public void keyPressed(KeyEvent event)
{
if(event.getKeyChar()= =‘ ’)
{
JLabel tempBullet = new JLabel(shipBullet);
tempBullet.setBounds(ship.getX()+20,ship.getY()−20,10,20); playerBullets.add(tempBullet);
cont.add((JLabel)(playerBullets.get(playerBullets.size()−1))); cont.setComponentZOrder((JLabel)(playerBullets.get(playerBullets.size()−1)),0);
}
}
Figure 31-3
Aliens are coming!
163

Figure 31-4
Aliens defeated. Second wave arrives.
public void keyReleased(KeyEvent event) { }
public void keyTyped(KeyEvent event) { }
public static void main (String[] args)
{
new SpaceDestroyers();
}
}
Figures 31-3 through 35-6 show the player
The aliens are now coming at you in droves. But defending the planet from the aliens.
it won’t be an epic battle unless they can return fire. Go on to the next project to learn how.
Project 31: Space Destroyers—Lasers
164

Project 32: Space Destroyers—Retaliation
Figure 31-5
Open fire!!!
Figure 31-6
Uh oh ... aliens spawn!
Project 32: Space Destroyers—Retaliation
Project
Next, create two variables. One represents the score and the other represents the health of the The fight intensifies! Give the aliens firepower!
spaceship. When the spaceship is attacked, subtract Create power-ups that appear every few rounds.
from its health. Add to the score when an alien is destroyed.
Making the game
Now for the power-ups. There are two types,
reflector beams and health packs. Reflector beams To arm the aliens, start by creating a random
randomize the aliens’ particles, making them
variable between 0 and 2500. If the value of that temporarily disappear. Health packs add energy to variable is less than or equal to 1, the alien fires its the spaceship. Every 3 rounds, a power-up appears.
laser. Create an ArrayList and use the same code Every 5 rounds, a health pack appears. At the
that triggers the spaceship to fire. In the infinite appropriate round, add the power-up to the top of loop, check for collisions between the alien lasers the screen and make it descend so the spaceship and the spaceship. If they collide, change the can capture it.
icon of the basic spaceship to the damaged
If the ship collects a health pack, remove the spaceship icon.
health pack and increase the spaceship’s health.
165
If the ship collides with a reflector beam, remove beam move upward using the setBounds method.
the reflector beam icon and add a new JLabel that If the beam collides with an alien, remove the alien covers the entire width of the screen. Make this and add points to the player’s score.
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
public class SpaceDestroyers extends JFrame implements KeyListener,MouseMotionListener
{
//this holds the components
Container cont;
//this is the current level:
int currentLevel = 1;
//this is the number of enemies:
int numOfEnemies = 1;
//this is the bullet’s image:
ImageIcon shipBullet = new ImageIcon(“shipBullet.PNG”); ImageIcon enemyBullet = new ImageIcon(“enemyBullet.PNG”);
//this holds the player’s bullets
ArrayList playerBullets = new ArrayList();
//this holds the enemies
ArrayList enemies = new ArrayList();
//this holds the bullets of the enemies
ArrayList enemyBullets = new ArrayList();
//these are the ship’s images
ImageIcon shipImg = new ImageIcon(“ship.PNG”); ImageIcon shipHit = new ImageIcon(“shipHit.PNG”);
//these are the images of the enemies
ImageIcon enemyImg = new ImageIcon(“enemy.PNG”); ImageIcon enemyHit = new ImageIcon(“enemyHit.PNG”);
//this is the powerup
JLabel powerup = new JLabel(new ImageIcon(“powerup.PNG”));
//this is the player’s ship
JLabel ship = new JLabel(shipImg);
//the attack from a powerup
JLabel powerAttack = new JLabel(new ImageIcon(“powerAttack.PNG”));
//this boolean keeps track of whether the power attack was used boolean useAttack = false;
//the health
JLabel healthPack = new JLabel(new ImageIcon(“health.PNG”));
//the score:
int score = 0;
//health
int health = 500;
//the final score:
int finalScore = 0;
Project 32: Space Destroyers—Retaliation
166
Project 32: Space Destroyers—Retaliation
public SpaceDestroyers()
{
super(“Space Destroyers”);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); setSize(500,700);
cont = getContentPane();
cont.setLayout(null);
//set the background color
cont.setBackground(Color.BLACK);
cont.add(ship);
ship.setBounds(225, 550,50,50);
addKeyListener(this);
addMouseMotionListener(this);
populateEnemies();
Play play= new Play();
play.start();
setContentPane(cont);
}
public void title()
{
try
{
JLabel title = new JLabel(new ImageIcon(“title.PNG”)); cont.add(title);
title.setBounds(−60,−300,600,200);
do
{
title.setBounds(title.getX(),title.getY()+1,600,200); Thread.sleep(3);
}
while(title.getY()<700);
}
catch(Exception e){ }
}
public void populateEnemies()
{
for(int i = 0; i <= numOfEnemies; i+ +)
{
JLabel tempEnemy = new JLabel(enemyImg);
int randLocation = (int)(Math.random()*500);
enemies.add(tempEnemy);
cont.add((JLabel)(enemies.get(i)));
tempEnemy.setBounds(randLocation,10,30,30);
cont.setComponentZOrder(((JLabel)(enemies.get(i))),0);
}
}
public class Play extends Thread
{
public void run()
{
while(true)
{
try
{
for(int i = 0; i < enemies.size(); i++)
{
167
JLabel tempEnemy = (JLabel)(enemies.get(i));
int distance = (int)(Math.random()*2);
tempEnemy.setBounds(tempEnemy.getX(), tempEnemy.getY()+distance,30,30);
//check if the power attack hit the aliens
if(useAttack)
{
if(powerAttack.getBounds().intersects(tempEnemy.getBounds()))
{
cont.remove(tempEnemy);
i− −;
numOfEnemies− −;
score + =15;
}
}
if(tempEnemy.getBounds().intersects(ship.getBounds()))
{
health− −;
cont.remove(tempEnemy);
}
if(tempEnemy.getY()>550)tempEnemy.setBounds(tempEnemy.getX(), 10, 30, 30); int fire = (int)(Math.random()*2500);
if(fire<=1)
{
JLabel tempBullet = new JLabel(enemyBullet);
tempBullet.setBounds(tempEnemy.getX()+5,tempEnemy.getY()+30,10,20); enemyBullets.add(tempBullet);
cont.add((JLabel)(enemyBullets.get(enemyBullets.size()−1))); cont.setComponentZOrder((JLabel)(enemyBullets.get(enemyBullets.size()−1)),0);
}
}
//chack if the player’s bullets hit the aliens boolean breakAll = false;
for(int i = 0; i <playerBullets.size(); i+ +)
{
JLabel temp = ((JLabel)(playerBullets.get(i))); temp.setBounds(temp.getX(),temp.getY()−8,10,20); if(temp.getY()<0)
{
cont.remove(temp);
playerBullets.remove(i);
i− −;
}
for(int j = 0; j < enemies.size(); j+ +)
{
JLabel tempEnemy = (JLabel)(enemies.get(j));
if(temp.getBounds().intersects(tempEnemy.getBounds()))
{
score+=1000;
tempEnemy.setIcon(enemyHit);
Thread.sleep(100);
enemies.remove(j);
cont.remove(tempEnemy);
numOfEnemies—;
if(numOfEnemies<=0)
{
currentLevel+ +;
if(currentLevel%3 = = 0)
{
cont.add(powerup);
int randLoc = (int)(Math.random()*450);
Project 32: Space Destroyers—Retaliation
168
Project 32: Space Destroyers—Retaliation
powerup.setBounds(randLoc,0,30,30);
}
if(currentLevel%5= =0)
{
cont.add(healthPack);
int randLoc = (int)(Math.random()*450);
healthPack.setBounds(randLoc,0,30,30);
}
numOfEnemies = currentLevel * currentLevel;
populateEnemies();
breakAll = true;
break;
}
}
}
if(breakAll)break;
}
//move the power attack
if(useAttack)
{
powerAttack.setBounds(0,powerAttack.getY()−1,500,10); if(powerAttack.getY()<0)
{
cont.remove(powerAttack);
useAttack = false;
currentLevel+ +;
numOfEnemies = currentLevel * currentLevel;
populateEnemies();
}
}
//if it is every third round, allow the
//powerup to be moved
if(currentLevel%3= =0)
{
powerup.setBounds(powerup.getX(),powerup.getY()+1,30,30); if(powerup.getBounds().intersects(ship.getBounds()))
{
useAttack = true;
cont.add(powerAttack);
powerAttack.setBounds(0,ship.getY(),500,10);
cont.remove(powerup);
powerup.setBounds(−200,−200,30,30);
}
}
if(currentLevel%5= =0)
{
healthPack.setBounds(healthPack.getX(),healthPack.getY()+1,30,30); if(healthPack.getBounds().intersects(ship.getBounds()))
{
health+=50;
score+=100;
cont.remove(healthPack);
healthPack.setBounds(−100,−100,30,30);
}
}
//check if the aliens’ bullets hit the player
breakAll = false;
for(int i = 0; i <enemyBullets.size(); i+ +) 169
{
JLabel temp = ((JLabel)(enemyBullets. get(i))); temp.setBounds(temp.getX(),temp.getY()+2,10,20); if(temp.getY()>550)
{
cont.remove(temp);
enemyBullets.remove(i);
i—;
}
if(ship.getBounds().intersects(temp.getBounds()))
{
ship.setIcon(shipHit);
Thread.sleep(100);
ship.setIcon(shipImg);
score− =100;
health− =50;
cont.remove(temp);
enemyBullets.remove(i);
numOfEnemies—;
if(numOfEnemies<=0)
{
currentLevel+ +;
numOfEnemies = currentLevel * currentLevel;
populateEnemies();
breakAll = true;
break;
}
}
if(breakAll)
break;
}
cont.repaint();
Thread.sleep(10);
}
catch(Exception e){ }
}
}
}
public void mouseMoved(MouseEvent event)
{
ship.setBounds(event.getX()−25,event.getY()−40,50,50);
}
public void mouseDragged(MouseEvent event){ }
public void keyPressed(KeyEvent event)
{
if(event.getKeyChar()= =‘ ’)
{
JLabel tempBullet = new JLabel(shipBullet);
tempBullet.setBounds(ship.getX()+20,ship.getY()−20,10,20); playerBullets.add(tempBullet);
cont.add((JLabel)(playerBullets.get(playerBullets.size()−1))); cont.setComponentZOrder(
(JLabel)(playerBullets.get(
playerBullets.size()−1)),0);
score−=2;
}
}
public void keyReleased(KeyEvent event) { }
Project 32: Space Destroyers—Retaliation
170

Project 32: Space Destroyers—Retaliation
public void keyTyped(KeyEvent event) { }
public static void main (String[] args)
{
new SpaceDestroyers();
}
}
Figures 32-1 through 32-4 show the fierce battle health packs look cool, they mean nothing because for Earth.
the player’s statistics are not displayed! In the next You need as much information as possible to
section, you will add this information to make the out-maneuver your enemies. Even though the
game more exciting.
Figure 32-1
Aliens retaliate.
171

Figure 32-2
Reflector beam power-up appears.
Project 32: Space Destroyers—Retaliation
172

Project 32: Space Destroyers—Retaliation
Figure 32-3
Reflector beam released.
Figure 32-4
Health pack appears.
173
Project 33: Space Destroyers—Life and Death
Project
Remember to update the JLabel after every
iteration of the infinite loop!
Display the score and health data. And for even Next, create an image that says “Space
more visual excitement, build scrolling title and Destroyers’ in a bold font. Attach that image to a end screens. Lock, load, and fire!
JLabel. To begin the game, scroll the title image across the screen. You can do this either in a Making the game
method called from the constructor or directly in the constructor.
First, create a JLabel that will display the current Next, the results. To display the score, create a level, score, and health of the spaceship. To
JLabel. Use setBounds to make this JLabel scroll enhance visibility of the display, increase the size across the screen. You can do this either in a of the font and change its color to white.
separate thread or a separate method.
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
public class SpaceDestroyers extends JFrame implements KeyListener, MouseMotionListener
{
//this holds the components
Container cont;
//this is the current level:
int currentLevel = 1;
//this is the number of enemies:
int numOfEnemies = 1;
//this is the bullet’s image:
ImageIcon shipBullet = new ImageIcon(“shipBullet.PNG”); ImageIcon enemyBullet = new ImageIcon(“enemyBullet.PNG”);
//this holds the player’s bullets
ArrayList playerBullets = new ArrayList();
//this holds the enemies
ArrayList enemies = new ArrayList();
//this holds the bullets of the enemies
ArrayList enemyBullets = new ArrayList();
//these are the ship’s images
ImageIcon shipImg = new ImageIcon(“ship.PNG”); ImageIcon shipHit = new ImageIcon(“shipHit.PNG”);
//these are the images of the enemies
ImageIcon enemyImg = new ImageIcon(“enemy.PNG”); ImageIcon enemyHit = new ImageIcon(“enemyHit.PNG”);
//this is the powerup
Project 33: Space Destroyers—Life and Death 174
Project 33: Space Destroyers—Life and Death JLabel powerup = new JLabel(new ImageIcon(“powerup.PNG”));
//this is the player’s ship
JLabel ship = new JLabel(shipImg);
//the attack from a powerup
JLabel powerAttack = new JLabel(new ImageIcon(“powerAttack.PNG”));
//this boolean keeps track of whether the power attack was used boolean useAttack = false;
//the health
JLabel healthPack = new JLabel(new ImageIcon(“health.PNG”));
//the score:
int score = 0;
//health
int health = 500;
//the final score:
int finalScore = 0;
public SpaceDestroyers()
{
super(“Space Destroyers”);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); setSize(500,700);
cont = getContentPane();
cont.setLayout(null);
//set the background color
cont.setBackground(Color.BLACK);
cont.add(ship);
ship.setBounds(225, 550,50,50);
addKeyListener(this);
addMouseMotionListener(this);
populateEnemies();
Play play= new Play();
play.start();
setContentPane(cont);
}
public void title()
{
try
{
JLabel title = new JLabel(new ImageIcon(“title.PNG”)); cont.add(title);
title.setBounds(−60,−300,600,200);
do
{
title.setBounds(title.getX(),title.getY()+1,600,200); Thread.sleep(3);
}
while(title.getY()<700);
}
catch(Exception e){ }
}
public void populateEnemies()
{
for(int i = 0; i <= numOfEnemies; i + +)
{
175
JLabel tempEnemy = new JLabel(enemyImg);
int randLocation = (int)(Math.random()*500);
enemies.add(tempEnemy);
cont.add((JLabel)(enemies.get(i)));
tempEnemy.setBounds(randLocation,10,30,30);
cont.setComponentZOrder(((JLabel)(enemies.get(i))),0);
}
}
public class Play extends Thread
{
public void run()
{
while(true)
{
try
{
for(int i = 0; i < enemies.size(); i++)
{
JLabel tempEnemy = (JLabel)(enemies.get(i));
int distance = (int)(Math.random()*2);
tempEnemy.setBounds(tempEnemy.getX(),
tempEnemy.getY()+distance,30,30);
//check if the power attack hit the aliens
if(useAttack)
{
if(powerAttack.getBounds().intersects(tempEnemy.getBounds()))
{
cont.remove(tempEnemy);
i− −;
numOfEnemies− −;
score+=15;
}
}
if(tempEnemy.getBounds().intersects(ship.getBounds()))
{
health—;
cont.remove(tempEnemy);
}
if(tempEnemy.getY()>550)
tempEnemy.setBounds(tempEnemy.getX(), 10, 30, 30); int fire = (int)(Math.random()*2500);
if(fire<=1)
{
JLabel tempBullet = new JLabel(enemyBullet);
tempBullet.setBounds(tempEnemy.getX()+5,
tempEnemy.getY()+30,10,20);
enemyBullets.add(tempBullet);
cont.add((JLabel)(enemyBullets.get(enemyBullets.size()−1))); cont.setComponentZOrder((JLabel)(enemyBullets.get (enemyBullets.size()−
1)),0);
}
}
//chack if the player’s bullets hit the aliens boolean breakAll = false;
for(int i = 0; i < playerBullets.size(); i+ +)
{
JLabel temp = ((JLabel)(playerBullets.get(i))); temp.setBounds(temp.getX(),temp.getY()−8,10,20); if(temp.getY()
Project 33: Space Destroyers—Life and Death
<0)
176
Project 33: Space Destroyers—Life and Death
{
cont.remove(temp);
playerBullets.remove(i);
i− −;
}
for(int j = 0; j < enemies.size(); j+ +)
{
JLabel tempEnemy = (JLabel)
(enemies.get(j));
if(temp.getBounds().intersects
(tempEnemy.getBounds()))
{
score+=1000;
tempEnemy.setIcon(enemyHit);
Thread.sleep(100);
enemies.remove(j);
cont.remove(tempEnemy);
numOfEnemies− −;
if(numOfEnemies<=0)
{
currentLevel+ +;
if(currentLevel%3 = = 0)
{
cont.add(powerup);
int randLoc = (int)(Math.random()*450);
powerup.setBounds(randLoc,0,30,30);
}
if(currentLevel%5 = = 0)
{
cont.add(healthPack);
int randLoc = (int)(Math.random()*450);
healthPack.setBounds(randLoc,0,30,30);
}
numOfEnemies = currentLevel * currentLevel;
populateEnemies();
breakAll = true;
break;
}
}
}
if(breakAll)
break;
}
//move the power attack
if(useAttack)
{
powerAttack.setBounds(0,powerAttack.getY()-1,500,10); if(powerAttack.getY()<0)
{
cont.remove(powerAttack);
useAttack = false;
currentLevel+ +;
numOfEnemies = currentLevel * currentLevel;
populateEnemies();
}
}
//if it is every third round, allow the
//powerup to be moved
if(currentLevel%3 = = 0)
{
177
powerup.setBounds(powerup.getX(),powerup.getY()+1,30,30); if(powerup.getBounds().intersects(ship.getBounds()))
{
useAttack = true;
cont.add(powerAttack);
powerAttack.setBounds(0,ship.getY(),500,10);
cont.remove(powerup);
powerup.setBounds(-200,-200,30,30);
}
}
if(currentLevel%5= =0)
{
healthPack.setBounds(healthPack.getX(),healthPack.getY()+1,30,30); if(healthPack.getBounds().intersects(ship.getBounds()))
{
health+=50;
score+=100;
cont.remove(healthPack);
healthPack.setBounds(−100,−100,30,30);
}
}
//check if the aliens’ bullets hit the player
breakAll = false;
for(int i = 0; i <enemyBullets.size(); i+ +)
{
JLabel temp = ((JLabel)(enemyBullets.get(i))); temp.setBounds(temp.getX(),temp.getY()+2,10,20); if(temp.getY()>550)
{
cont.remove(temp);
enemyBullets.remove(i);
i− −;
}
if(ship.getBounds().intersects(temp.getBounds()))
{
ship.setIcon(shipHit);
Thread.sleep(100);
ship.setIcon(shipImg);
score− =100;
health− =50;
cont.remove(temp);
enemyBullets.remove(i);
numOfEnemies—;
if(numOfEnemies<=0)
{
currentLevel+ +;
numOfEnemies = currentLevel * currentLevel;
populateEnemies();
breakAll = true;
break;
}
}
if(breakAll)
break;
}
cont.repaint();
Thread.sleep(10);
}
Project 33: Space Destroyers—Life and Death 178
Project 33: Space Destroyers—Life and Death catch(Exception e){ }
}
}
}
public void mouseMoved(MouseEvent event)
{
ship.setBounds(event.getX()−25,event.getY()−40,50,50);
}
public void mouseDragged(MouseEvent event){ }
public void keyPressed(KeyEvent event)
{
if(event.getKeyChar()= =‘ ’)
{
JLabel tempBullet = new JLabel(shipBullet);
tempBullet.setBounds(ship.getX()+20,ship.getY()−20,10,20); playerBullets.add(tempBullet);
cont.add((JLabel)(playerBullets.get(playerBullets.size()-1))); cont.setComponentZOrder(
(JLabel)(playerBullets.get(
playerBullets.size()-1)),0);
score- =2;
}
}
public void keyReleased(KeyEvent event) { }
public void keyTyped(KeyEvent event) { }
public static void main (String[] args)
{
new SpaceDestroyers();
}
}
Figures 33-1 through 33-6 illustrate the game play Assign different powers to the aliens –
of Space Destroyers.
some fire lasers, some fire lightning
rings.
Add dual-wielding to the player’s ship. Fire up Customizing the game
to four lasers at once!
Change the spaceship’s initial health—make the Add a special, limited, bomb-like weapon for the game super hard or easy enough for n00bs.
spaceship that shoots shrapnel in all directions.
Add more power-ups. Make ultra-laser beams that Add extra health to the enemies: give them
are wider and can destroy multiple aliens at once.
enough body armor to survive the first attack by Add multiple spaceships: let up to four other
the spaceship.
players compete simultaneously!
Give the spaceship the power to become
invisible intermittently.
179

Figure 33-1
Customized title.
Project 33: Space Destroyers—Life and Death 180

Project 33: Space Destroyers—Life and Death Figure 33-2
Score display.
181

Figure 33-3
Results, part 1.
Figure 33-4
Results, part 2.
Project 33: Space Destroyers—Life and Death Figure 33-5 Results, part 3.
Figure 33-6
Results, part 4.
182
Section Five
Strategy Games
Project 34: Bomb Diffuser—Bomb Squad Noob
precise size of your image by clicking “Image” and then click “Attributes,” as illustrated in Figure 34-1.
Bomb Diffuser
Choose a light gray background color for the
bomb and detonator that blends in with the
As the newest member of the Bomb Squad, your
background of the JFrame. This way, if the game is job is to go out into the field and risk your life resized, the gap in between the image and the
defusing live explosive devices. Eye-hand
background will not be noticed.
coordination, quick thinking ... and a bit of luck is required.
There are two key parts of this image: the bomb and the detonator. Start by drawing the bomb at the top portion of the screen. Use the Rectangle and Pen tools, to make things easier. Don’t forget to Project
add the detonation cord and the text “TNT!”
Learn the inner workings of a bomb by creating an The next step is to add the detonator at the
inert one.
bottom portion of the screen. First, create a gray rectangle. Give it the appearance of being 3D by Making the game
adding perspective lines. Create spaces for a clue, the time left, and the disarm code. Later, you will First, create the JFrame. Set it to 500 by 550 pixels add components that go into these spaces.
and set the background color to gray. Next, you will Once you are done drawing the image of the
need to draw the image of the bomb and detonator.
bomb, go ahead and add it to the JFrame. Set it to To do this, open Microsoft Paint, specify the
position 0,0.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;
public class BombDiffuser extends JFrame
{
//the bomb label
JLabel bomb = new JLabel(new ImageIcon(“bomb.PNG”));
//the container of the components
Container cont;
183

public BombDiffuser()
{
super(“Bomb Diffuser”);
setSize(500,550);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); cont = getContentPane();
cont.setLayout(null);
cont.setBackground(Color.gray);
//add the background image
cont.add(bomb);
bomb.setBounds(0,0,500,500);
setContentPane(cont);
}
public static void main (String[] args)
{
new BombDiffuser();
}
}
Figure 34-4 illustrates the completed bomb.
You’ve graduated ... it’s time to stop
working on inert bombs and start diffusing
live ones!
Project 34: Bomb Diffuser—Bomb Squad Noob Figure 34-1 Image size.
184

Project 34: Bomb Diffuser—Bomb Squad Noob
Figure 34-2
Bomb design.
Figure 34-3
Completed bomb before placement on the JFrame.
185

Figure 34-4
Bomb displayed in the JFrame.
Project 35: Bomb Diffuser—Expert Diffuser
Project
Next, use the setBounds method to position the components. You can find the exact position by Here’s where you put your skills to use to prevent opening the image in Microsoft Paint and hovering detonation.
over the target area. The coordinates are displayed on the bottom right of the program, as illustrated in Figure 35-1.
Making the game
After adding the components, create a variable The first part of this project consists of adding four that will represent the time left. Use a Thread to components to the background bomb image: time, subtract one from that variable every second. Don’t clue, disarm button, and text input area. Begin by forget to reset the new text to the JLabel!
initializing these four components. Create the text Now it’s time to set up the process of diffusing input area with a component called a TextField.
the bomb. First, create a method that initializes the Create it the same way you create a JButton or code to a random number. Next, if the JButton is JLabel. You can get the inputted text with the clicked, change the JLabel that represents the clue following command:
to display whether the player’s guess is too high field.getText();
or too low.
Project 35: Bomb Diffuser—Expert Diffuser
186
Project 35: Bomb Diffuser—Expert Diffuser
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;
public class BombDiffuser extends JFrame implements ActionListener
{
//the time before detonation
int timeLeft = 12;
//the JLabel that displays the time left
JLabel time = new JLabel(timeLeft+“”);
//the bomb label
JLabel bomb = new JLabel(new ImageIcon(“bomb.PNG”));
//the clue:
JLabel clue = new JLabel();
//the code:
int code = 0;
//where the disarm code is entered:
TextField attempt = new TextField(20);
//the button when you think you have the correct combo JButton disarm = new JButton(“DISARM”);
//the container of the components
Container cont;
//the thread
Countdown count;
public BombDiffuser()
{
super(“Bomb Diffuser”);
setSize(500,550);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); cont = getContentPane();
cont.setLayout(null);
cont.setBackground(Color.gray);
//add the background image
cont.add(bomb);
bomb.setBounds(0,0,500,500);
//set the font of the JLabel
time.setFont(new Font(“Courier”, Font.BOLD, 20));
//add the time left JLabel
cont.add(time);
//set the position
time.setBounds(250,371,150,18);
//put the label on top of the background
cont.setComponentZOrder(time,0);
//add the disarm button
cont.add(disarm);
disarm.setBounds(200,456,150,30);
disarm.addActionListener(this);
cont.setComponentZOrder(disarm,0);
clue.setText(“A number between 0 and “+20);
cont.add(clue);
clue.setBounds(167,435,250,20);
//put the label on top of the background
cont.setComponentZOrder(clue,0);
187
//add the text field
cont.add(attempt);
attempt.setBounds(271,404,150,25);
//set all the components
cont.validate();
setContentPane(cont);
setCode();
count = new Countdown();
count.start();
}
public void setCode()
{
code = (int)(Math.random()*20);
}
//the counting down thread:
public class Countdown extends Thread
{
public void run()
{
while(true)
{
try
{
timeLeft− −;
time.setText(timeLeft+“”);
Thread.sleep(1000);
}
catch(Exception e){ }
}
}
}
public void actionPerformed(ActionEvent event)
{
if(Integer.parseInt(attempt.getText())>code)
{
clue.setText(“CAUTION: Attempted Code is TOO HIGH”);
}
if(Integer.parseInt(attempt.getText())<code)
{
clue.setText(“CAUTION: Attempted Code is TOO LOW”);
}
if(attempt.getText().equals(“”+code))
{
//nothing happens ... yet!
}
}
public static void main (String[] args)
{
new BombDiffuser();
}
}
Figures 35-2 through 35-5 illustrate the attempt to Move on to the next project to learn how to add Project 35: Bomb Diffuser—Expert Diffuser diffuse a bomb.
the exploding images.
188

Project 35: Bomb Diffuser—Expert Diffuser
Figure 35-1
Coordinates displayed.
Figure 35-2
Detonator counts down.
189

Figure 35-3
Guess is too high.
Project 35: Bomb Diffuser—Expert Diffuser Figure 35-4 Guess is too low.
190

Project 36: Bomb Diffuser—Kaboom!!!
Figure 35-5
Bomb should explode now ... but it doesn’t.
Project 36: Bomb Diffuser—Kaboom!!!
Project
Make the bomb explode. Watch out! Take cover!
Run!
Making the game
To add flashing explosions, you need to create two images: the first represents a fiery explosion (see Figure 36-1); the second image is identical to the first, except the colors are inverted and the position is flipped (see Figure 36-2).
Create JLabels for each image. Then, in the
countdown thread, check to see if the time left is less than or equal to zero. If so, call a method that will display the JLabels.
Figure 36-1
First explosion.
191
The method removes every component from the
images. To alternate the images, call the setBounds container. All that remains are the two alternating method.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;
public class BombDiffuser extends JFrame implements ActionListener
{
//the time before detonation
int timeLeft = 12;
//the JLabel that displays the time left
JLabel time = new JLabel(timeLeft+“”);
//the bomb label
JLabel bomb = new JLabel(new ImageIcon(“bomb.PNG”));
//the clue:
JLabel clue = new JLabel();
//the exploded bomb:
JLabel exploded = new JLabel(new ImageIcon(“exploded.PNG”)); JLabel exploded2 = new JLabel(new ImageIcon(“exploded2.PNG”));
//the code:
int code = 0;
//where the disarm code is entered:
TextField attempt = new TextField(20);
//the button when you think you have the correct combo JButton disarm = new JButton(“DISARM”);
//the container of the components
Container cont;
//the thread
Countdown count;
public BombDiffuser()
{
super(“Bomb Diffuser”);
setSize(500,550);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); cont = getContentPane();
cont.setLayout(null);
cont.setBackground(Color.gray);
//add the background image
cont.add(bomb);
bomb.setBounds(0,0,500,500);
//set the font of the JLabel
time.setFont(new Font(“Courier”, Font.BOLD, 20));
//add the time left JLabel
cont.add(time);
//set the position
time.setBounds(250,371,150,18);
//put the label on top of the background
cont.setComponentZOrder(time,0);
//add the disarm button
cont.add(disarm);
Project 36: Bomb Diffuser—Kaboom!!!
disarm.setBounds(200,456,150,30);
192
Project 36: Bomb Diffuser—Kaboom!!!
disarm.addActionListener(this);
cont.setComponentZOrder(disarm,0);
clue.setText(“A number between 0 and 20”);
cont.add(clue);
clue.setBounds(167,435,250,20);
//put the label on top of the background
cont.setComponentZOrder(clue,0);
//add the text field
cont.add(attempt);
attempt.setBounds(271,404,150,25);
//add the explosion offscreen
cont.add(exploded);
exploded.setBounds(−1000,−1000,500,550);
cont.setComponentZOrder(exploded,0);
cont.add(exploded2);
exploded2.setBounds(−1000,−1000,500,550);
cont.setComponentZOrder(exploded2,0);
//set all the components
cont.validate();
setContentPane(cont);
setCode();
count = new Countdown();
count.start();
}
public void setCode()
{
code = (int)(Math.random()*20);
}
//the counting down thread:
public class Countdown extends Thread
{
public void run()
{
while(true)
{
try
{
if(timeLeft>0)
{
timeLeft− −;
time.setText(timeLeft+“”);
}
else
{
break;
}
Thread.sleep(1000);
}
catch(Exception e){ }
}
//call the method that displays the blasts
explode();
}
public void explode()
{
//first, remove everything else:
193
cont.remove(time);
cont.remove(bomb);
cont.remove(clue);
cont.remove(attempt);
cont.remove(disarm);
//move the explosion images to the correct location exploded.setBounds(0,0,500,550);
exploded2.setBounds(0,0,500,550);
while(true)
{
try
{
exploded.setBounds(0,0,500,550);
exploded2.setBounds(−1000,−1000,500,550);
Thread.sleep(100);
exploded2.setBounds(0,0,500,550);
exploded.setBounds(−1000,−1000,500,550);
Thread.sleep(100);
}
catch(Exception e){ }
}
}
}
public void actionPerformed(ActionEvent event)
{
if(Integer.parseInt(attempt.getText())>code)
{
clue.setText(“CAUTION: Attempted Code is TOO HIGH”);
}
if(Integer.parseInt(attempt.getText())<code)
{
clue.setText(“CAUTION: Attempted Code is TOO LOW”);
}
if(attempt.getText().equals(“”+code))
{
//this code will be added later
}
}
public static void main (String[] args)
{
new BombDiffuser();
}
}
Figures 36-3 through 36-5 display the steps of a Ready for more action? In the next project, add bomb exploding.
levels to your game. As you become a more experienced bomb diffuser, the codes get more challenging.
Project 36: Bomb Diffuser—Kaboom!!!
194

Project 36: Bomb Diffuser—Kaboom!!!
Figure 36-2
Second explosion.
Figure 36-3
Detonator counts down.
195

Figure 36-4
Flashing explosion.
Project 36: Bomb Diffuser—Kaboom!!! Figure 36-5 Alternate image of exploding bomb.
196

Project 37: Bomb Diffuser—Rising Through the Project 37: Bomb Diffuser—Rising Through the Ranks Project
Add levels to the game. Although you will breeze past the first few challenges, don’t get cocky ... the codes get more and more complex!
Making the game
Figure 37-1
Congratulate the player.
First, create a way to signal the user that he/she has diffused the bomb. To do this, create an image that congratulates the player such as the one in explodes the bomb! Why? You have not yet paused Figure 37-1.
the game.
Display this image in the if-statement that
Here’s how you do it: create a boolean that stops compares the user’s input and the random code.
the counter when its value is true. Then, you need Next, reset the code by using a higher number. You to create a button for the player to indicate he/she can do this by basing the code on a maximum
is ready to start the next round. Hint: don’t create a number. Increase the maximum number every round.
new button; use the same “disarm” button.
Because the levels get more complex, you need to There is only one more thing you need to add:
give the player more time to guess the disarm
a score. Create a JLabel that will display the score, code. To do this, create a multiplier that increases and increment the score by the remaining time left the starting time every round. Try playing the when a bomb is diffused. Don’t forget to reset the game. Once you beat a level, the detonator still text in the JLabel.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;
public class BombDiffuser extends JFrame implements ActionListener
{
//the player’s bomb diffusal rating/score
int score = 0;
//the time before detonation
int timeLeft = 12;
//the JLabel that displays the time left
JLabel time = new JLabel(timeLeft+“”);
//the bomb label
JLabel bomb = new JLabel(new ImageIcon(“bomb.PNG”));
//the clue:
Ranks
JLabel clue = new JLabel();
//this display’s the player’s score (aka bomb diffusal rating) JLabel rating = new JLabel(“Your Bomb Diffusal Success Rating: “+score);
//the exploded bomb:
JLabel exploded = new JLabel(new ImageIcon(“exploded.PNG”)); JLabel exploded2 = new JLabel(new ImageIcon(“exploded2.PNG”)); 197
//boolean that waits for the button to be pressed again boolean waiting = false;
//this will be displayed after the player disarms the bomb JLabel promote = new JLabel(new ImageIcon(“promote.PNG”));
//these are the difficulty level variables
//the multiplier for the number of digits:
int digitsMultiplier = 1;
int maxNum = 10;
//the code:
int code = 0;
//where the disarm code is entered:
TextField attempt = new TextField(20);
//the button when you think you have the correct combo JButton disarm = new JButton(“DISARM”);
//the container of the components
Container cont;
//the thread
Countdown count;
public BombDiffuser()
{
super(“Bomb Diffuser”);
setSize(500,550);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); cont = getContentPane();
cont.setLayout(null);
cont.setBackground(Color.gray);
//add the background image
cont.add(bomb);
bomb.setBounds(0,0,500,500);
//set the font of the JLabel
time.setFont(new Font(“Courier”, Font.BOLD, 20));
//add the time left JLabel
cont.add(time);
//set the position
time.setBounds(250,371,150,18);
//put the label on top of the background
cont.setComponentZOrder(time,0);
//set the completion label offscreen
cont.add(promote);
promote.setBounds(−300,−300,276,122);
cont.setComponentZOrder(promote,0);
//add the score to the screen
cont.add(rating);
rating.setBounds(5,480,500,30);
rating.setForeground(Color.white);
rating.setFont(new Font(“Courier”,Font.BOLD,19)); cont.setComponentZOrder(rating,0);
//add the disarm button
cont.add(disarm);
disarm.setBounds(200,456,150,30);
disarm.addActionListener(this);
cont.setComponentZOrder(disarm,0);
clue.setText(“A number between 0 and “+maxNum); Project 37: Bomb Diffuser—Rising Through the Ranks cont.add(clue);
198
Project 37: Bomb Diffuser—Rising Through the clue.setBounds(167,435,250,20);
//put the label on top of the background
cont.setComponentZOrder(clue,0);
//add the text field
cont.add(attempt);
attempt.setBounds(271,404,150,25);
//add the explosion offscreen
cont.add(exploded);
exploded.setBounds(−1000,−1000,500,550);
cont.setComponentZOrder(exploded,0);
cont.add(exploded2);
exploded2.setBounds(−1000,−1000,500,550);
cont.setComponentZOrder(exploded2,0);
//set all the components
cont.validate();
setContentPane(cont);
setCode();
count = new Countdown();
count.start();
}
public void setCode()
{
code = (int)(Math.random()*maxNum);
}
//the counting down thread:
public class Countdown extends Thread
{
public void run()
{
while(true)
{
try
{
if(!waiting)
{
if(timeLeft>0)
{
timeLeft—;
time.setText(timeLeft+“”);
}
else
{
break;
}
}
Thread.sleep(1000);
}
catch(Exception e){ }
}
//call the method that displays the blasts
explode();
}
Ranks
public void explode()
{
//first, remove everything else:
cont.remove(time);
cont.remove(bomb);
cont.remove(clue);
199
cont.remove(rating);
cont.remove(promote);
cont.remove(attempt);
cont.remove(disarm);
//move the explosion images to the correct location exploded.setBounds(0,0,500,550);
exploded2.setBounds(0,0,500,550);
while(true)
{
try
{
exploded.setBounds(0,0,500,550);
exploded2.setBounds(−1000,−1000,500,550);
Thread.sleep(100);
exploded2.setBounds(0,0,500,550);
exploded.setBounds(−1000,−1000,500,550);
Thread.sleep(100);
}
catch(Exception e){ }
}
}
}
public void actionPerformed(ActionEvent event)
{
if(waiting)
{
promote.setBounds(−300,−300,276,122);
setCode();
clue.setText(“A number between 0 and “+maxNum); timeLeft = 15*digitsMultiplier;
waiting = false;
}
else
{
if(Integer.parseInt(attempt.getText())>code)
{
clue.setText(“CAUTION: Attempted Code is TOO HIGH”);
}
if(Integer.parseInt(attempt.getText())<code)
{
clue.setText(“CAUTION: Attempted Code is TOO LOW”);
}
if(attempt.getText().equals(“”+code))
{
score+=timeLeft;
rating.setText(“Your Bomb Diffusal Success Rating: “+score); promote.setBounds(150,100,276,122);
waiting = true;
digitsMultiplier+ +;
maxNum*=5;
}
}
}
public static void main (String[] args)
{
new BombDiffuser();
Project 37: Bomb Diffuser—Rising Through the Ranks
}
}
200

Project 37: Bomb Diffuser—Rising Through the Figure 37-2
Detonator counts down.
Ranks
Figure 37-3
Bomb successfully diffused.
201

Figure 37-4
*#$%!!!... out of time!
Figures 37-2 through 37-4 illustrate the stress of Add letters and/or symbols to the code.
bomb diffusion.
Make the user work to break the code: offer
simple mathematical equations.
Customizing the game
To increase the stress level, have the timer not only display seconds, but milliseconds as well.
Place two bombs on the screen at the same time.
Give the player a limited number of guesses. If Alter the difficulty of the game by changing the he/she can’t guess correctly, BOOM! The bomb
time given for diffusion.
detonates.
Project 38: Trapper—Men on the Move
path or back up into your own trail—you’ll
Trapper
be trapped!
In this multiplayer strategy game, battle it out Project
with others by trapping them in the trail you leave behind. Don’t accidentally cross your adversary’s Construct two moving characters that are
Project 38: Trapper—Men on the Move
controlled by each opponent.
202
Project 38: Trapper—Men on the Move
see if the “A,” “S,” “W,” or “D” keys are pressed.
Making the game
These keys control the direction of player one.
The “J,” “K,” “I,” and “L” keys control the second Start by creating the JFrame; setting it to 500 by player’s direction. Now, to keep track of each 500 pixels. Now, create 10×10 pixel images for player’s direction, employ the same technique you each player. Make a JLabel for each image. Use did in Radical Racing: use different int values to the setBounds method to position the JLabels on represent different directions. Once these variables opposite sides of the field.
are created, change the variable in the
Construct two threads: one to control the first keyPressed method.
player’s direction; the other to control the direction Once the players’ orientations are established, of the second player. Because the direction of each they need to move around the arena. In each
player is controlled by the keyboard, each thread thread’s infinite loop, move the players by using must implement keyListener. Add the keyListener the setBounds method.
methods to both threads. In the methods, check to import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
public class Trapper extends JFrame
{
//the two JLabels that represent each player
JLabel p1 = new JLabel(new ImageIcon(“p1.PNG”)); JLabel p2 = new JLabel(new ImageIcon(“p2.PNG”)); boolean keepPlaying = true;
//these variables keep track of the direction
int UP = 1, RIGHT = 2, DOWN = 3, LEFT = 4;
int p1Direction = RIGHT;
int p2Direction = LEFT;
Container cont;
public Trapper()
{
super(“Trapper”);
setSize(500,500);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); setVisible(true);
cont = getContentPane();
cont.setLayout(null);
cont.add(p1);
cont.setComponentZOrder(p1,0);
p1.setBounds(20,245,10,10);
cont.add(p2);
cont.setComponentZOrder(p2,0);
p2.setBounds(455,245,10,10);
P1Move p1Thread = new P1Move();
p1Thread.start();
P2Move p2Thread = new P2Move();
p2Thread.start();
setContentPane(cont);
203
}
public class P1Move extends Thread implements KeyListener
{
public void run()
{
addKeyListener(this);
while(keepPlaying)
{
try
{
if(p1Direction= =UP)
p1.setBounds(p1.getX(),p1.getY()−5,10,10);
if(p1Direction= =DOWN)
p1.setBounds(p1.getX(),p1.getY()+5,10,10);
if(p1Direction= =RIGHT)
p1.setBounds(p1.getX()+5,p1.getY(),10,10);
if(p1Direction= =LEFT)
p1.setBounds(p1.getX()−5,p1.getY(),10,10);
cont.validate();
Thread.sleep(75);
}
catch(Exception e){ }
}
}
public void keyPressed(KeyEvent e)
{
if(e.getKeyChar()= =’a’)
p1Direction = LEFT;
if(e.getKeyChar()= =’s’)
p1Direction = DOWN;
if(e.getKeyChar()= =’d’)
p1Direction = RIGHT;
if(e.getKeyChar()= =’w’)
p1Direction = UP;
}
public void keyTyped(KeyEvent e){ }
public void keyReleased(KeyEvent e){ }
}
public class P2Move extends Thread implements KeyListener
{
public void run()
{
addKeyListener(this);
while(keepPlaying)
{
try
{
if(p2Direction= =UP)
p2.setBounds(p2.getX(),p2.getY()−5,10,10);
if(p2Direction= =DOWN)
p2.setBounds(p2.getX(),p2.getY()+5,10,10);
if(p2Direction= =RIGHT)
p2.setBounds(p2.getX()+5,p2.getY(),10,10);
if(p2Direction= =LEFT)
p2.setBounds(p2.getX()−5,p2.getY(),10,10);
cont.validate();
Thread.sleep(75);
Project 38: Trapper—Men on the Move
}
204

Project 38: Trapper—Men on the Move
catch(Exception e){ }
}
}
public void keyPressed(KeyEvent e)
{
if(e.getKeyChar()= =’j’)
p2Direction = LEFT;
if(e.getKeyChar()= =’k’)
p2Direction = DOWN;
if(e.getKeyChar()= =’l’)
p2Direction = RIGHT;
if(e.getKeyChar()= =’i’)
p2Direction = UP;
}
public void keyTyped(KeyEvent e){ }
public void keyReleased(KeyEvent e){ }
}
public static void main (String[] args)
{
new Trapper();
}
}
Figures 38-1 and 38-2 show the initial movement Keep going to add trails that the characters leave of the characters.
behind as they move. It’s time to start trapping!
Figure 38-1
Arena.
205

Figure 38-2
Characters move around.
Project 39: Trapper—Setting the Trap
Project
player two. In order to store all of the images, use an ArrayList. You will use this feature in the next You’re now ready to add trails to track the
project to detect collisions into the trail.
characters’ movements. This is the heart of the In each thread’s infinite loop, create a temporary game. Don’t get trapped and ... don’t let your JLabel that holds the image of the segment of the opponent escape your trap!
trail. Add this temporary JLabel to the ArrayList and to the container. Use setBounds to set the Making the game
position of the image to the location of the player.
Don’t forget to use the setComponentZOrder
Each player’s trail consists of a progressive line of method to keep the trail at position “1” so the lead 10 by 10 pixel images. Use a black segment to
image of the player is always displayed.
represent player one’s trail and a blue segment for import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
public class Trapper extends JFrame
{
Project 39: Trapper—Setting the Trap
//the two JLabels that represent each player
206
Project 39: Trapper—Setting the Trap
JLabel p1 = new JLabel(new ImageIcon(“p1.PNG”)); JLabel p2 = new JLabel(new ImageIcon(“p2.PNG”));
//these variables keep track of the direction
int UP = 1, RIGHT = 2, DOWN = 3, LEFT = 4;
int p1Direction = RIGHT;
int p2Direction = LEFT;
//this ArrayLists holds the trails of each player ArrayList trailList = new ArrayList();
Container cont;
public Trapper()
{
super(“Trapper”);
setSize(500,500);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); setVisible(true);
cont = getContentPane();
cont.setLayout(null);
cont.add(p1);
cont.setComponentZOrder(p1,0);
p1.setBounds(20,245,20,20);
cont.add(p2);
cont.setComponentZOrder(p2,0);
p2.setBounds(455,245,20,20);
P1Move p1Thread = new P1Move();
p1Thread.start();
P2Move p2Thread = new P2Move();
p2Thread.start();
setContentPane(cont);
}
public class P1Move extends Thread implements KeyListener
{
public void run()
{
addKeyListener(this);
while(true)
{
try
{
//add the trail
JLabel temp = new JLabel(new ImageIcon(“p1trail.PNG”));; trailList.add(temp);
cont.add(temp);
cont.setComponentZOrder(temp,1);
temp.setBounds(p1.getX(),p1.getY(),10,10);
if(p1Direction= =UP)
p1.setBounds(p1.getX(),p1.getY()−5,20,20);
if(p1Direction= =DOWN)
p1.setBounds(p1.getX(),p1.getY()+5,20,20);
if(p1Direction= =RIGHT)
p1.setBounds(p1.getX()+5,p1.getY(),20,20);
if(p1Direction= =LEFT)
p1.setBounds(p1.getX()−5,p1.getY(),20,20);
cont.validate();
Thread.sleep(75);
}
207
catch(Exception e){ }
}
}
public void keyPressed(KeyEvent e)
{
if(e.getKeyChar()= =’a’)
p1Direction = LEFT;
if(e.getKeyChar()= =’s’)
p1Direction = DOWN;
if(e.getKeyChar()= =’d’)
p1Direction = RIGHT;
if(e.getKeyChar()= =’w’)
p1Direction = UP;
}
public void keyTyped(KeyEvent e){ }
public void keyReleased(KeyEvent e){ }
}
public class P2Move extends Thread implements KeyListener
{
public void run()
{
addKeyListener(this);
while(true)
{
try
{
//add the trail:
JLabel temp = new JLabel(new ImageIcon(“p2trail.PNG”));; trailList.add(temp);
cont.add(temp);
cont.setComponentZOrder(temp,1);
temp.setBounds(p2.getX(),p2.getY(),10,10);
if(p2Direction= =UP)
p2.setBounds(p2.getX(),p2.getY()−5,20,20);
if(p2Direction= =DOWN)
p2.setBounds(p2.getX(),p2.getY()+5,20,20);
if(p2Direction= =RIGHT)
p2.setBounds(p2.getX()+5,p2.getY(),20,20);
if(p2Direction= =LEFT)
p2.setBounds(p2.getX()−5,p2.getY(),20,20);
cont.validate();
Thread.sleep(75);
}
catch(Exception e){ }
}
}
public void keyPressed(KeyEvent e)
{
if(e.getKeyChar()= =’j’)
p2Direction = LEFT;
if(e.getKeyChar()= =’k’)
p2Direction = DOWN;
if(e.getKeyChar()= =’l’)
p2Direction = RIGHT;
if(e.getKeyChar()= =’i’)
p2Direction = UP;
}
Project 39: Trapper—Setting the Trap
208

Project 39: Trapper—Setting the Trap
public void keyTyped(KeyEvent e){ }
public void keyReleased(KeyEvent e){ }
}
public static void main (String[] args)
{
new Trapper();
}
}
Figure 39-1
Players start moving.
Figure 39-2
Players leave a trail.
209

Figure 39-3
Player 1 wins ... but it is a hollow victory until collision detection is added.
Figures 39-1 through 39-3 show the trapping trails Move on to learn how to add collision detection.
that follow each player.
Project 40: Trapper—Trapped!
Project
To determine if a player collides with a trail, use a for loop to check every JLabel —except the
Add collision detection. Watch out!
last 10—in the ArrayList. You do not need to
check the last 10 segments because they always overlap the player. If there is a collision, use a Making the game
JOptionPane to announce the winner.
The collision detection checks two events: leaving When the program is executed, you will notice
the grid and colliding with a trail. To determine if the pop-up message displays continuously because a player leaves the grid, use a simple if-statement the threads are still running. To stop the display, use in each infinite loop. Check whether the “x” and a boolean that controls the infinite loop. Set the
“y” values of the player is above 500 or below 0.
boolean to “false” in order to terminate the threads.
If so, use a JOptionPane to announce the winner.
Project 40: Trapper—Trapped!
210
Project 40: Trapper—Trapped!
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
public class Trapper extends JFrame
{
//the two JLabels that represent each player
JLabel p1 = new JLabel(new ImageIcon(“p1.PNG”)); JLabel p2 = new JLabel(new ImageIcon(“p2.PNG”)); boolean keepLooping = true;
//these variables keep track of the direction
int UP = 1, RIGHT = 2, DOWN = 3, LEFT = 4;
int p1Direction = RIGHT;
int p2Direction = LEFT;
//this ArrayLists holds the trails of each player ArrayList trailList = new ArrayList();
Container cont;
public Trapper()
{
super(“Trapper”);
setSize(500,500);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); setVisible(true);
cont = getContentPane();
cont.setLayout(null);
cont.add(p1);
cont.setComponentZOrder(p1,0);
p1.setBounds(20,245,10,10);
cont.add(p2);
cont.setComponentZOrder(p2,0);
p2.setBounds(455,245,10,10);
P1Move p1Thread = new P1Move();
p1Thread.start();
P2Move p2Thread = new P2Move();
p2Thread.start();
setContentPane(cont);
}
public class P1Move extends Thread implements KeyListener
{
public void run()
{
addKeyListener(this);
while(keepLooping)
{
try
{
//check to see if p2 hits the walls
if(p1.getX()>500 || p1.getX()<0 || p1.getY()>500 || p1.getY()<0)
{
p1Lose();
}
//check to see if p2 hits the trails
for(int i = 0; i < trailList.size()−10; i+ +)
{
211
JLabel tempTrail = (JLabel) trailList.get(i);
if(p1.getBounds().intersects(tempTrail.getBounds()))
{
p1Lose();
}
}
//add the trail
JLabel temp = new JLabel(new ImageIcon(“p1trail.PNG”));; trailList.add(temp);
cont.add(temp);
cont.setComponentZOrder(temp,1);
temp.setBounds(p1.getX(),p1.getY(),10,10);
if(p1Direction= =UP)
p1.setBounds(p1.getX(),p1.getY()−5,10,10);
if(p1Direction= =DOWN)
p1.setBounds(p1.getX(),p1.getY()+5,10,10);
if(p1Direction= =RIGHT)
p1.setBounds(p1.getX()+5,p1.getY(),10,10);
if(p1Direction= =LEFT)
p1.setBounds(p1.getX()−5,p1.getY(),10,10);
cont.validate();
Thread.sleep(75);
}
catch(Exception e){ }
}
}
public void p1Lose()
{
keepLooping = false;
JOptionPane.showMessageDialog(null,”Player 2 Wins!!!”);
}
public void keyPressed(KeyEvent e)
{
if(e.getKeyChar()= =’a’)
p1Direction = LEFT;
if(e.getKeyChar()= =’s’)
p1Direction = DOWN;
if(e.getKeyChar()= =’d’)
p1Direction = RIGHT;
if(e.getKeyChar()= =’w’)
p1Direction = UP;
}
public void keyTyped(KeyEvent e){ }
public void keyReleased(KeyEvent e){ }
}
public class P2Move extends Thread implements KeyListener
{
public void run()
{
addKeyListener(this);
while(keepLooping)
{
try
{
//check to see if p2 hits the walls
if(p2.getX()>500 || p2.getX()<0 || p2.getY()>500 || p2.getY()<0)
{
Project 40: Trapper—Trapped!
p2Lose();
212
Project 40: Trapper—Trapped!
}
//check to see if p2 hits the trails
for(int i = 0; i < trailList.size()−10; i+ +)
{
JLabel tempTrail = (JLabel) trailList.get(i);
if(p2.getBounds().intersects(tempTrail.getBounds()))
{
p2Lose();
}
}
//add the trail:
JLabel temp = new JLabel(new ImageIcon(“p2trail.PNG”));; trailList.add(temp);
cont.add(temp);
cont.setComponentZOrder(temp,1);
temp.setBounds(p2.getX(),p2.getY(),10,10);
if(p2Direction= =UP)
p2.setBounds(p2.getX(),p2.getY()−5,10,10);
if(p2Direction= =DOWN)
p2.setBounds(p2.getX(),p2.getY()+5,10,10);
if(p2Direction= =RIGHT)
p2.setBounds(p2.getX()+5,p2.getY(),10,10);
if(p2Direction= =LEFT)
p2.setBounds(p2.getX()−5,p2.getY(),10,10);
cont.validate();
Thread.sleep(75);
}
catch(Exception e){ }
}
}
public void p2Lose()
{
keepLooping = false;
JOptionPane.showMessageDialog(null,”Player 1 Wins!!!”);
}
public void keyPressed(KeyEvent e)
{
if(e.getKeyChar()= =’j’)
p2Direction = LEFT;
if(e.getKeyChar()= =’k’)
p2Direction = DOWN;
if(e.getKeyChar()= =’l’)
p2Direction = RIGHT;
if(e.getKeyChar()= =’i’)
p2Direction = UP;
}
public void keyTyped(KeyEvent e){ }
public void keyReleased(KeyEvent e){ }
}
public static void main (String[] args)
{
new Trapper();
}
}
Figures 40-1 and 40-2 depict a strategy of the trails.
213

Read the next project to uncover ways to add a more striking background and a bolder way to alert players of wins and losses.
Figure 40-1
Players battle it out!
Project 40: Trapper—Trapped! Figure 40-2 Player One successfully traps Player Two.
214
Project 41: Trapper—Showdown
Project 41: Trapper—Showdown
Project
Once a player wins, add a fun way of
“rewinding” the game. You can “undo” the players’
Add an eye-catching background image and attention-moves by using a for loop and removing the trail grabbing graphics to notify players of the winner.
segments. To do this, create a for loop that
counts down from the number of components in
Making the game
the container minus 4. This leaves the background image and the actual player images. To find the Let your imagination go wild. Draw a 500 by 500
number of components in the container, use the pixel background image in Microsoft Paint. Create following:
a JLabel for it and use the setBounds method to cont.getComponentCount()
center it. Don’t forget to use the
Remember to refresh the container after
setComponentZOrder method to send the
removing each trail segment. In addition, create background image behind the other icons.
a JLabel that holds the same text as the
Now, draw an image—any image you want—to
JOptionPanes from the previous project.
notify the players of the winner. Display this image instead of the JOptionPane when a player wins.
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
public class Trapper extends JFrame
{
//the two JLabels that represent each player
JLabel p1 = new JLabel(new ImageIcon(“p1.PNG”)); JLabel p2 = new JLabel(new ImageIcon(“p2.PNG”)); boolean keepPlaying = true;
//these variables keep track of the direction
int UP = 1, RIGHT = 2, DOWN = 3, LEFT = 4;
int p1Direction = RIGHT;
int p2Direction = LEFT;
//this ArrayLists holds the trails of each player ArrayList trailList = new ArrayList();
Container cont;
public Trapper()
{
super(“Trapper”);
setSize(500,500);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); setVisible(true);
cont = getContentPane();
cont.setLayout(null);
//this is the background JLabel:
JLabel bg = new JLabel(new ImageIcon(“bg.png”)); 215
cont.add(bg);
bg.setBounds(0,0,500,500);
cont.add(p1);
cont.setComponentZOrder(p1,0);
p1.setBounds(20,245,10,10);
cont.add(p2);
cont.setComponentZOrder(p2,0);
p2.setBounds(455,245,10,10);
P1Move p1Thread = new P1Move();
p1Thread.start();
P2Move p2Thread = new P2Move();
p2Thread.start();
setContentPane(cont);
}
public class P1Move extends Thread implements KeyListener
{
public void run()
{
addKeyListener(this);
while(keepPlaying)
{
try
{
//check to see if p2 hits the walls
if(p1.getX()>500 || p1.getX()<0 || p1.getY()>500 || p1.getY()<0)
{
p1Lose();
}
//check to see if p2 hits the trails
for(int i = 0; i < trailList.size()−10; i+ +)
{
JLabel tempTrail = (JLabel) trailList.get(i);
if(p1.getBounds().intersects(tempTrail.getBounds()))
{
p1Lose();
}
}
//add the trail
JLabel temp = new JLabel(new ImageIcon(“p1trail.PNG”));; trailList.add(temp);
cont.add(temp);
cont.setComponentZOrder(temp,1);
temp.setBounds(p1.getX(),p1.getY(),10,10);
if(p1Direction= =UP)
p1.setBounds(p1.getX(),p1.getY()−5,10,10);
if(p1Direction= =DOWN)
p1.setBounds(p1.getX(),p1.getY()+5,10,10);
if(p1Direction= =RIGHT)
p1.setBounds(p1.getX()+5,p1.getY(),10,10);
if(p1Direction= =LEFT)
p1.setBounds(p1.getX()−5,p1.getY(),10,10);
cont.validate();
Thread.sleep(75);
}
catch(Exception e){ }
}
}
Project 41: Trapper—Showdown
public void p1Lose()
216
Project 41: Trapper—Showdown
{
try
{
keepPlaying = false;
JLabel winner = new JLabel(“Player 2 (blue) Wins!!!”); cont.add(winner);
cont.setComponentZOrder(winner,0);
winner.setFont(new Font(“arial”,Font.BOLD,30)); winner.setBounds(75,50,400,100);
for(int i = cont.getComponentCount()−4; i > 0; i− −)
{
cont.remove(i);
cont.repaint();
Thread.sleep(25);
}
}
catch(Exception e){ }
}
public void keyPressed(KeyEvent e)
{
if(e.getKeyChar()= =’a’)
p1Direction = LEFT;
if(e.getKeyChar()= =’s’)
p1Direction = DOWN;
if(e.getKeyChar()= =’d’)
p1Direction = RIGHT;
if(e.getKeyChar()= =’w’)
p1Direction = UP;
}
public void keyTyped(KeyEvent e){ }
public void keyReleased(KeyEvent e){ }
}
public class P2Move extends Thread implements KeyListener
{
public void run()
{
addKeyListener(this);
while(keepPlaying)
{
try
{
//check to see if p2 hits the walls
if(p2.getX()>500 || p2.getX()<0 || p2.getY()>500 || p2.getY()<0)
{
p2Lose();
}
//check to see if p2 hits the trails
for(int i = 0; i < trailList.size()−10; i+ +)
{
JLabel tempTrail = (JLabel) trailList.get(i);
if(p2.getBounds().intersects(tempTrail.getBounds()))
{
p2Lose();
}
}
//add the trail:
JLabel temp = new JLabel(new ImageIcon(“p2trail.PNG”));; trailList.add(temp);
cont.add(temp);
217
cont.setComponentZOrder(temp,1);
temp.setBounds(p2.getX(),p2.getY(),10,10);
if(p2Direction= =UP)
p2.setBounds(p2.getX(),p2.getY()−5,10,10);
if(p2Direction= =DOWN)
p2.setBounds(p2.getX(),p2.getY()+5,10,10);
if(p2Direction= =RIGHT)
p2.setBounds(p2.getX()+5,p2.getY(),10,10);
if(p2Direction= =LEFT)
p2.setBounds(p2.getX()−5,p2.getY(),10,10);
cont.validate();
Thread.sleep(75);
}
catch(Exception e){ }
}
}
public void p2Lose()
{
try
{
keepPlaying = false;
JLabel winner = new JLabel(“Player 1 (black) Wins!!!”); cont.add(winner);
cont.setComponentZOrder(winner,0);
winner.setFont(new Font(“arial”,Font.BOLD,30)); winner.setBounds(75,50,400,100);
for(int i = cont.getComponentCount()−4; i > 0; i− −)
{
cont.remove(i);
cont.repaint();
Thread.sleep(25);
}
}
catch(Exception e){ }
}
public void keyPressed(KeyEvent e)
{
if(e.getKeyChar()= =’j’)
p2Direction = LEFT;
if(e.getKeyChar()= =’k’)
p2Direction = DOWN;
if(e.getKeyChar()= =’l’)
p2Direction = RIGHT;
if(e.getKeyChar()= =’i’)
p2Direction = UP;
}
public void keyTyped(KeyEvent e){ }
public void keyReleased(KeyEvent e){ }
}
public static void main (String[] args)
{
new Trapper();
}
}
Project 41: Trapper—Showdown
218

Project 41: Trapper—Showdown
Figure 41-1 and 41-2 illustrate the ultimate game Add two additional characters so up to four
play of Trapper.
players can compete at once.
No friends? Add artificial intelligence to battle Customizing the game
the computer.
Construct the game so players are limited to
Dramatically increase the speed of one player
right turns only ... or reverse direction only.
while slowing down the other. Strategy note: each speed has its own advantages and disadvantages.
Randomize the keys in the middle of the game.
The players have no idea which way the image
Modify the size of the players: supersized or mini!
will turn!
Create levels: best out of three, five, or eleven rounds wins.
Figure 41-1
Background image in place as players
Figure 41-2
Player One wins; trails begin to
compete.
disappear.
219
This page intentionally left blank
Section Six
Retro Games
Project 42: Oiram—The Platform
You can access elements in two dimensional
arrays the same way you access elements in
Oiram
normal arrays:
int element =
Help Oiram capture the stars and stomp out his twoDArray[<rows>][<columns>];
enemies by leaping from platform to platform! Be warned, however . . . this is a multi-level game.
Use the following code to find the number of
As Oiram defeats enemies, more are waiting to
rows and columns in the two dimensional array: appear in the next round.
int rows = twoDArray.length;
int columns = twoDArray[0].length;
Project
Making the game
Begin by creating the platform in which Oiram
battles.
There are three different areas of the game board: land, air, and ladders. Each of these areas occupies New Building Blocks
a 50 by 50 pixel zone on the board. To keep track of each of these zones, use a two dimensional
Two Dimensional Arrays
array with “#” representing land, “|” representing Two dimensional arrays
ladder, and a “space” representing air. You must draw these images before you add the zones to the Two dimensional arrays are like normal arrays, JFrames. Each image should be 50 by 50 pixels.
except they hold additional information in another Figures 42-2 through 43-4 represent the three
dimension. Figure 42-1 explains the similarities different zones.
and differences.
To display the board in a JFrame, iterate through To make a two dimensional array, create a
the array in the constructor by using two for
normal array with a second set of brackets:
loops. On each iteration, use if-statements to verify whether the current area is air, land, or a int twoDArray [][] =
ladder. Use the setBounds method to display the
{{1,2,3},{4,5,6},{7,8,9}}
correct image.
221
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.awt.geom.*;
public class Oiram extends JFrame
{
Container cont;
//the 2 dimensional array
String arena[][] =
{{“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”},
{“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”},
{“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“|”,“#”,“#”,“ ”},
{“ ”,“#”,“#”,“#”,“ ”,“ ”,“|”,“#”,“ ”,“ ”},
{“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“|”,“#”,“ ”,“ ”},
{“ ”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“ ”},
{“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”},
{“#”,“#”,“#”,“#”,“ ”,“ ”,“#”,“#”,“#”,“#”},
{“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”},
{“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”}};
public Oiram()
{
super(“Oiram”);
setSize(500,500);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); cont = getContentPane();
cont.setLayout(null);
cont.setBackground(Color.BLACK);
//generate the board:
for(int i = 0; i < arena.length; i+ +)
{
for(int j = 0; j < arena[0].length; j++)
{
JLabel lbl = null;
if(arena[j][i].equals(“#”))
{
lbl = new JLabel(new ImageIcon(“ground.png”));
}
else if(arena[j][i].equals(“ ”))
{
lbl = new JLabel(new ImageIcon(“air.png”));
}
else if(arena[j][i].equals(“|”))
{
lbl = new JLabel(new ImageIcon(“ladder.png”));
}
cont.add(lbl);
lbl.setBounds(i*50,j*50,50,50);
}
}
repaint();
cont.validate();
setContentPane(cont);
}
public static void main (String[] args)
{
new Oiram();
Project 42: Oiram—The Platform
}
}
222

Project 42: Oiram—The Platform
Figure 42-3
Air.
Figure 42-1
Two types of arrays.
Figure 42-2
Land.
Figure 42-4
Ladder.
Figure 42-5
Platform.
223

Figure 42-5 shows Oiram’s world: the platform.
In the next project, set Oiram free ... and give him stars to collect!
Project 43: Oiram—Go, Oiram, Go
Project
jump/climb, if he is already in the air. If Oiram is not climbing, check whether the spot above Oiram Put Oiram in his home and give him the ability is air. If it is, determine whether Oiram is jumping to move around. Add stars for him to chase and and if the location below him is air. If the location capture.
below him is not air and he is not jumping, move Oiram up 50 pixels. If Oiram is climbing, move him up 50 pixels and again check whether he is in Making the game
the air. If Oiram is in the air, move him 50 pixels to the right because he has reached the top of Create Oiram. Start by drawing a 50 by 50 pixel the ladder. Then, set the climbing boolean to
picture of him. Use a JLabel and the setBounds false.
method to place Oiram in the bottom left
corner. Figure 43-1 displays Oiram’s starting
When the “D” key is pressed, Oiram moves right.
location.
First, check whether Oiram is inside the arena. If he is, check whether the space to Oiram’s right is air. If Oiram’s world consists of moving on the ground, so, move Oiram 50 pixels to the right. If the location jumping in the air, and climbing ladders. Create to the right is a ladder, move Oiram 50 pixels to the booleans to represent jumping and climbing. Next, right and set the climbing variable to true.
add a keyListener. In the keyTyped method, check whether the “A,” “W,” or “D” key is pressed to Now, run the game. You will notice that when
determine Oiram’s movements.
Oiram climbs up a ladder, as shown in Figure 43-2, Oiram looks weird.
When the “A” key is pressed, Oiram moves left.
Remember to check the boolean that represents
To fix this, create a new 50 by 50 pixel image of whether Oiram is climbing. If Oiram is climbing, Oiram climbing the ladder. Only display it when set the boolean to false. If Oiram is not climbing, the climbing variable is true. Figure 43-3 illustrates move him 50 pixels to the left.
the new and improved image.
When the “W” key is pressed, Oiram jumps
Now that Oiram can move around, you need to
(or, if he is on a ladder, climbs). Oiram should not add stars for him to catch. Do this by creating a method that randomly generates the location of stars. Use two for loops to iterate through the array of the board. If the location of the board contains air, use a random number between 0 and 9 to give a one in ten chance for a star to appear. If the number is 0, generate a star in that location. Don’t forget to add the star to an ArrayList. Call this Project 43: Oiram—Go, Oiram, Go Figure 43-1 Oiram’s starting location.
method from the constructor.
224

Project 43: Oiram—Go, Oiram, Go
Figure 43-3
Oiram, not looking weird, climbs.
Figure 43-2
Oiram, looking weird, climbs.
container and ArrayList. Next, create an if-
statement that checks whether Oiram is jumping.
If he is jumping, move Oiram up 50 pixels and
There are only two things left to do: make
then end his jump by setting the boolean to false.
Oiram fall and let him collect the stars. To do this, If Oiram is not jumping, check whether the spot create a Thread called Runner. In the infinite loop, below him is air. If it is, lower Oiram 50 pixels.
iterate through the ArrayList of stars. If Oiram Don’t forget to add the Thread.sleep method to intersects a star, remove the star from both the your infinite loop.
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.awt.geom.*;
public class Oiram extends JFrame implements KeyListener
{
Container cont;
//the two dimensional array:
String arena[][] =
{{“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”},
{“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”},
{“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“|”,“#”,“#”,“ ”},
{“ ”,“#”,“#”,“#”,“ ”,“ ”,“|”,“#”,“ ”,“ ”},
{“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“|”,“#”,“ ”,“ ”},
{“ ”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“ ”},
{“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”},
{“#”,“#”,“#”,“#”,“ ”,“ ”,“#”,“#”,“#”,“#”},
{“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”},
{“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”}};
225
ArrayList stars = new ArrayList();
JLabel character = new JLabel(new ImageIcon(“oiram.png”)); boolean jumping = false;
boolean climbing = false;
Runner runner;
public Oiram()
{
super(“Oiram”);
setSize(500,500);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); cont = getContentPane();
cont.setLayout(null);
addKeyListener(this);
cont.setBackground(Color.BLACK);
cont.add(character);
character.setBounds(0,400,50,50);
generateStars();
//generate the board:
for(int i = 0; i < arena.length; i+ +)
{
for(int j = 0; j < arena[0].length; j++)
{
JLabel lbl = null;
if(arena[j][i].equals())
{
lbl = new JLabel(new ImageIcon(“ground.png”));
}
else if(arena[j][i].equals(“ ”))
{
lbl = new JLabel(new ImageIcon(“air.png”));
}
else if(arena[j][i].equals(“|”))
{
lbl = new JLabel(new ImageIcon(“ladder.png”));
}
cont.add(lbl);
lbl.setBounds(i*50,j*50,50,50);
}
}
repaint();
cont.validate();
runner = new Runner();
runner.start();
setContentPane(cont);
}
//add the stars
public void generateStars()
{
for(int i = 1; i < arena.length; i+ +)
{
for(int j = 0; j < arena[0].length; j++)
{
//check if the current location is air
if(arena[i][j].equals(“ ”))
Project 43: Oiram—Go, Oiram, Go
{
226
Project 43: Oiram—Go, Oiram, Go
//this random number gives a 1 in 10 chance of a star being placed here int placeOrNot = (int)(Math.random()*10);
if(placeOrNot= =0)
{
JLabel star = new JLabel(new ImageIcon(“star.png”)); cont.add(star);
star.setBounds(j*50,i*50,50,50);
cont.setComponentZOrder(star,0);
cont.setComponentZOrder(character,0);
stars.add(star);
}
}
}
}
}
public class Runner extends Thread
{
public void run()
{
while(true)
{
try
{
//if Oiram touches a star, remove it
for(int i = 0; i < stars.size(); i++)
{
JLabel star = (JLabel) stars.get(i);
if(star.getBounds().intersects(character.getBounds()))
{
cont.remove(star);
stars.remove(star);
}
}
//let Oiram fall
if(!jumping)
{
if(arena[(character.getY()/50)+1][character.getX()/50].equals(“ ”))
{
character.setBounds(character.getX(),character.getY()+50,50,50);
}
}
else
{
//end Oiram’s jump at the next iteration
jumping = false;
//move Oiram up:
if(arena[(character.getY()/50)−1][character.getX()/50].equals(“ ”))
{
character.setBounds(character.getX(),character.getY()−50,50,50);
}
}
Thread.sleep(250);
}
catch(Exception e){ }
}
}
}
public void keyPressed(KeyEvent e){ }
public void keyReleased(KeyEvent e){ }
public void keyTyped(KeyEvent e)
227
{
//move left
if(e.getKeyChar()= =‘a’)
{
if(climbing)
{
climbing = false;
character.setIcon(new ImageIcon(“oiram.png”));
}
if(character.getX()>=50 &&
arena[character.getY()/50][(character.getX()/50)−1].equals(“ ”))
{
character.setBounds(character.getX()−50,character.getY(),50,50);
}
}
//move right
if(e.getKeyChar()= =‘d’)
{
if(character.getX()<=400 && arena
[character.getY()/50][(character.getX()/50)+1].equals(“ ”))
{
character.setBounds(character.getX()+50,character.getY(),50,50);
}
if(arena[character.getY()/50][(character.getX()/50)+1].equals(“|”))
{
character.setBounds(character.getX()+50,character.getY(),50,50); climbing = true;
character.setIcon(new ImageIcon(“onladder.png”));
}
}
//move up
if(e.getKeyChar()= =‘w’)
{
if(!climbing)
{
if(arena[(character.getY()/50)−1][character.getX()/50].equals(“ ”))
{
if(!jumping && !arena[(character.getY()/50)+1][character.getX()/50].equals(“ ”))
{
jumping = true;
character.setBounds(character.getX(),character.getY()−50,50,50);
}
}
}
else
{
character.setBounds(character.getX(), character.getY()−50,50,50); if(arena[character.getY()/50][character.getX()/50].equals(“ ”))
{
character.setBounds(character.getX()+50,character.getY(),50,50); climbing = false;
character.setIcon(new ImageIcon(“oiram.png”));
}
}
}
}
public static void main (String[] args)
{
new Oiram();
}
Project 43: Oiram—Go, Oiram, Go }
228

Project 43: Oiram—Go, Oiram, Go
Figures 43-4 and 43-5 show Oiram in action.
project and learn how to make Oiram’s life
Every Evil Genius knows a game is not
miserable.
complete without adversaries. Move on to the next Figure 43-4
Platform.
Figure 43-5
Collecting stars.
229

Projct 44: Oiram—Bad Guys
Project
The chase is on! Here you design Oiram’s enemies.
They’re fast, they’re relentless . . . they’re deadly.
Making the game
First, draw a 50 by 50 pixel image of Oiram’s
enemy like the one in Figure 44-1.
Next, create a method that adds the enemies
to the platform. Use a loop to generate two
enemies. Place them at the very top of the board Figure 44-1
Oiram’s enemy.
and give them a random “X” coordinate. In
addition, add the enemies to an ArrayList for easy enemy is air. If it is, move the enemy 50 pixels to access later.
the right. If the random number is one, check
Oiram’s enemies are controlled by simple logic: whether the space to the left of the enemy is air. If if there is air below them, they fall. If not, they so, move the enemy 50 pixels to the left.
either move left or right. In the Thread’s loop, use Now that the enemies are mobile, you need to
a for loop to examine each enemy in the
give Oiram a fighting chance. If he jumps on an ArrayList. Use an if-statement to determine
enemy, the enemy dies. Use an if-statement to
whether the location below the enemy is air. If so, compare the location of Oiram and his adversary.
lower the enemy 50 pixels. Next, generate a
If Oiram is 50 pixels above the enemy, remove the random number (0 or 1) by multiplying the
enemy from the container. If Oiram occupies
Math.random method by two. If the number is
the same location as his adversary, remove Oiram: zero, check whether the location to the right of the the enemy wins.
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.awt.geom.*;
public class Oiram extends JFrame implements KeyListener
{
//the container:
Container cont;
//the 2 dimensional array
String arena[][] =
{{“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”},
{“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”},
{“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“|”,“#”,“#”,“ ”},
{“ ”,“#”,“#”,“#”,“ ”,“ ”,“|”,“#”,“ ”,“ ”},
Projct 44: Oiram—Bad Guys
{“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“|”,“#”,“ ”,“ ”},
230
Projct 44: Oiram—Bad Guys
{“ ”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“ ”},
{“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”},
{“#”,“#”,“#”,“#”,“ ”,“ ”,“#”,“#”,“#”,“#”},
{“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”},
{“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”}};
//this holds the stars:
ArrayList stars = new ArrayList();
//Oiram!
JLabel character = new JLabel(new ImageIcon(“oiram.png”));
//whether or not Oiram is jumping/climbing
boolean jumping = false;
boolean climbing = false;
//the Thread
Runner runner;
//this holds the enemies
ArrayList enemies = new ArrayList();
public Oiram()
{
super(“Oiram”);
setSize(500,500);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); cont = getContentPane();
cont.setLayout(null);
addKeyListener(this);
cont.setBackground(Color.BLACK);
//add Oiram
cont.add(character);
character.setBounds(0,400,50,50);
//create teh stars and enemies
generateStars();
generateEnemies();
//generate the board:
for(int i = 0; i < arena.length; i+ +)
{
for(int j = 0; j < arena[0].length; j++)
{
JLabel lbl = null;
if(arena[j][i].equals(“#”))
{
lbl = new JLabel(new ImageIcon(“ground.png”));
}
else if(arena[j][i].equals(“ ”))
{
lbl = new JLabel(new ImageIcon(“air.png”));
}
else if(arena[j][i].equals(“|”))
{
lbl = new JLabel(new ImageIcon(“ladder.png”));
}
cont.add(lbl);
lbl.setBounds(i*50,j*50,50,50);
}
}
repaint();
cont.validate();
//start the Thread:
runner = new Runner();
231
runner.start();
setContentPane(cont);
}
public void generateStars()
{
//loop through te two dimensional array
for(int i = 1; i < arena.length; i+ +)
{
for(int j = 0; j < arena[0].length; j++)
{
if(arena[i][j].equals(“ ”))
{
//give a 1 in 10 chance of placing a star
int placeOrNot = (int)(Math.random()*10);
if(placeOrNot= =0)
{
//add the star
JLabel star = new JLabel(new ImageIcon(“star.png”)); cont.add(star);
star.setBounds(j*50,i*50,50,50);
cont.setComponentZOrder(star,0);
cont.setComponentZOrder(character,0);
stars.add(star);
}
}
}
}
}
public void generateEnemies()
{
//add the new enemies
for(int i = 0; i < 2; i+ +)
{
JLabel enemy = new JLabel(new ImageIcon(“enemy.png”)); cont.add(enemy);
int xLoc = (int)(Math.random()*8);
enemy.setBounds(xLoc*50,0,50,50);
cont.setComponentZOrder(enemy,0);
enemies.add(enemy);
}
}
public class Runner extends Thread
{
public void run()
{
while(true)
{
try
{
//check the following on every enemy
for(int i = 0; i < enemies.size(); i+ +)
{
JLabel enemy = (JLabel) enemies.get(i);
//only apply the following to onscreen enemies if(enemy.getY()<=450 && enemy.getX()<=450)
{
//move the enemy down, if possible
if(arena[(enemy.getY()/50)+1][enemy.getX()/50].equals(“ ”)) Projct 44: Oiram—Bad Guys
{
232
Projct 44: Oiram—Bad Guys
enemy.setBounds(enemy.getX(),enemy.getY()+50,50,50);
}
//move the enemy left/right
int direction = (int)(Math.random()*2);
if(direction= =0)
{
if(arena[enemy.getY()/50][(enemy.getX()/50)+1].equals(“ ”))
{
enemy.setBounds(enemy.getX()+50,enemy.getY(),50,50);
}
}
else
{
if(arena[enemy.getY()/50][(enemy.getX()/50)−1].equals(“ ”))
{
enemy.setBounds(enemy.getX()−50,enemy.getY(),50,50);
}
}
//if Oiram jumps on an enemy, remove the enemy if(enemy.getY()−50= =character.getY() && enemy.getX()= =character.getX())
{
enemy.setBounds(1000,1000,50,50);
cont.remove(enemy);
}
//if an enemy eats Oiram, display the losing image if(enemy.getY()= =character.getY() && enemy.getX()= =character.getX())
{
cont.remove(character);
}
}
}
//check the following on every star
for(int i = 0; i < stars.size(); i+ +)
{
JLabel star = (JLabel) stars.get(i);
//if Oiram captures a star, remove it
if(star.getBounds().intersects(character.getBounds()))
{
cont.remove(star);
stars.remove(star);
}
}
//let Oiram fall
if(!jumping)
{
if(arena[(character.getY()/50)+1][character.getX()/50].equals(“ ”))
{
character.setBounds(character.getX(),character.getY()+50,50,50);
}
}
//let Oiram jump
else
{
jumping = false;
if(arena[(character.getY()/50)−1][character.getX()/50] .equals(“ ”))
{
character.setBounds(character.getX(),character.getY()−50,50,50);
}
}
233
//delay
Thread.sleep(250);
}
catch(Exception e){ }
}
}
}
public void keyPressed(KeyEvent e){ }
public void keyReleased(KeyEvent e){ }
public void keyTyped(KeyEvent e)
{
//move Oiram left
if(e.getKeyChar()= =‘a’)
{
//check if Oiram is climbing. if so, end the climb if(climbing)
{
climbing = false;
character.setIcon(new ImageIcon(“oiram.png”));
}
//Move Oiram left, if possible
if(character.getX()>=50 && arena[character.getY()/50][(character.getX()/50)−
1].equals(“ ”))
{
character.setBounds(character.getX()−50,character.getY(),50,50);
}
}
//move Oiram right
if(e.getKeyChar()= =‘d’)
{
//don’t let Oiram go offscreen!’
if(character.getX()<=400 &&
arena[character.getY()/50][(character.getX()/50)+1].equals(“ ”))
{
character.setBounds(character.getX()+50,character.getY(),50,50);
}
//if Oiram hits a ladder, begin to climb
if(arena[character.getY()/50][(character.getX()/50)+1].equals(“|”))
{
character.setBounds(character.getX()+50,character.getY(),50,50); climbing = true;
character.setIcon(new ImageIcon(“onladder.png”));
}
}
//jump/climb
if(e.getKeyChar()= =‘w’)
{
//if Oiram is not climbing, then jump up!
if(!climbing)
{
if(arena[(character.getY()/50)−1][character.getX()/50].equals(“ ”))
{
if(!jumping && !arena[(character.getY()/50)+1][character.getX()/50].equals(“ ”))
{
jumping = true;
character.setBounds(character.getX(),character.getY()−50,50,50);
}
}
}
Projct 44: Oiram—Bad Guys
234

Projct 44: Oiram—Bad Guys
//move Oiram up the ladder ...
else
{
character.setBounds(character.getX(), character.getY()−50,50,50);
//Oiram reached the top of the ladder. change his icon
//and move hime over.
if(arena[character.getY()/50][character.getX()/50].equals(“ ”))
{
character.setBounds(character.getX()+50,character.getY(),50,50); climbing = false;
character.setIcon(new ImageIcon(“oiram.png”));
}
}
}
}
public static void main (String[] args)
{
new Oiram();
}
}
Figures 44-2 through 44-4 illustrate enemy
It’s not over yet for Oiram! Keep going to learn action.
how to add more levels of increasing difficulty.
Figure 44-2
Enemies are alive!
235

Figure 44-3
One enemy down.
Figure 44-4
Remaining enemy kills Oiram.
Projct 44: Oiram—Bad Guys
236
Project 45: Oiram—Complicated World
Project 45: Oiram—Complicated World
Project
Oiram collects a star or defeats an enemy, subtract one from the appropriate variable. In the infinite Add levels of increasing difficulty and
loop, check the values of both variables. Once both winning/losing images to your game board.
variables are zero, increment the level variable by one. Call the methods that generate the stars and enemies. In addition, create a JLabel that displays Making the game
the current level. Remember to refresh the JLabel whenever the level changes.
Oiram will fight through five levels: each level will add more enemies. To increase the number of
To give Oiram a score, create a variable.
enemies, slightly modify the method that draws Increment it by 100 each time Oiram captures a them. To do this, create one global variable that star. Increment it by 200 when Oiram defeats an keeps track of the level of play. Declare another adversary. Display the score in a JLabel.
variable inside the method that holds a random You can also add a fun title image. Draw Oiram number (1 or 2). Add that random number to the in a 500 by 50 pixel image. Display the JLabel that level variable. Create that number of enemies.
holds the image at the top of the platform.
A new level begins when Oiram defeats all of
To add winning/losing images, create two 500 by his opponents and captures all of the stars. To 500 pixel images. Start by displaying them
begin a new level, initialize two variables: one that offscreen. If Oiram dies or wins by getting past keeps track of the number of enemies and one that level five, move the appropriate image to the center keeps track of the number of stars. Each time
of the arena. Remember to remove all other images.
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.awt.geom.*;
public class Oiram extends JFrame implements KeyListener
{
//the container:
Container cont;
//the 2 dimensional array
String arena[][] =
{{“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”},
{“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”},
{“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“|”,“#”,“#”,“ ”},
{“ ”,“#”,“#”,“#”,“ ”,“ ”,“|”,“#”,“ ”,“ ”},
{“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“|”,“#”,“ ”,“ ”},
{“ ”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“ ”},
{“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”},
{“#”,“#”,“#”,“#”,“ ”,“ ”,“#”,“#”,“#”,“#”},
{“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”,“ ”},
{“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”}};
237
//this holds the stars:
ArrayList stars = new ArrayList();
//Oiram!
JLabel character = new JLabel(new ImageIcon(“oiram.png”));
//whether or not Oiram is jumping/climbing
boolean jumping = false;
boolean climbing = false;
//the Thread
Runner runner;
//Oiram’s score’
int score = 0;
//the number of remaining stars
int starsLeft;
//this holds the enemies
ArrayList enemies = new ArrayList();
//the winning/losing images
JLabel win = new JLabel(new ImageIcon(“win.png”)); JLabel lose = new JLabel(new ImageIcon(“lose.png”));
//the title image
JLabel title = new JLabel(new ImageIcon(“title.png”));
//the current level
int level = 1;
//the number of enemies
int enemyCount = 1;
//displays the level/score:
JLabel levelLbl = new JLabel(“Level “+level+”/5”); JLabel scoreLbl = new JLabel(“Score “+score);
public Oiram()
{
super(“Oiram”);
setSize(500,500);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); cont = getContentPane();
cont.setLayout(null);
addKeyListener(this);
cont.setBackground(Color.BLACK);
//add the win/lose images offscreen
cont.add(win);
win.setBounds(500,500,500,500);
cont.add(lose);
lose.setBounds(500,500,500,500);
//add the level label
cont.add(levelLbl);
levelLbl.setFont(new Font(“arial”,Font.BOLD,20)); levelLbl.setBounds(375,5,150,50);
//add the score label
cont.add(scoreLbl);
scoreLbl.setFont(new Font(“arial”,Font.BOLD,20)); scoreLbl.setBounds(20,5,150,50);
//add the title image
cont.add(title);
title.setBounds(0,0,500,50);
//add Oiram
cont.add(character);
character.setBounds(0,400,50,50);
//create teh stars and enemies
generateStars();
Project 45: Oiram—Complicated World
generateEnemies();
238
Project 45: Oiram—Complicated World
//generate the board:
for(int i = 0; i < arena.length; i+ +)
{
for(int j = 0; j < arena[0].length; j+ +)
{
JLabel lbl = null;
if(arena[j][i].equals(“#”))
{
lbl = new JLabel(new ImageIcon(“ground.png”));
}
else if(arena[j][i].equals(“ ”))
{
lbl = new JLabel(new ImageIcon(“air.png”));
}
else if(arena[j][i].equals(“|”))
{
lbl = new JLabel(new ImageIcon(“ladder.png”));
}
cont.add(lbl);
lbl.setBounds(i*50,j*50,50,50);
}
}
repaint();
cont.validate();
//start the Thread:
runner = new Runner();
runner.start();
setContentPane(cont);
}
public void generateStars()
{
//loop through te two dimensional array
for(int i = 1; i < arena.length; i+ +)
{
for(int j = 0; j < arena[0].length; j+ +)
{
if(arena[i][j].equals(“ ”))
{
//give a 1 in 10 chance of placing a star
int placeOrNot = (int)(Math.random()*10);
if(placeOrNot= =0)
{
//add the star
JLabel star = new JLabel(new ImageIcon(“star.png”)); cont.add(star);
star.setBounds(j*50,i*50,50,50);
cont.setComponentZOrder(star,0);
cont.setComponentZOrder(character,0);
stars.add(star);
starsLeft+ +;
}
}
}
}
}
public void generateEnemies()
{
//add a random number of enemies
int increaseBy = (int)(Math.random()*2)+1;
239
enemyCount = level+increaseBy;
//add the new enemies
for(int i = 0; i < enemyCount; i+ +)
{
JLabel enemy = new JLabel(new ImageIcon(“enemy.png”)); cont.add(enemy);
int xLoc = (int)(Math.random()*8);
enemy.setBounds(xLoc*50,0,50,50);
cont.setComponentZOrder(enemy,0);
enemies.add(enemy);
}
}
public class Runner extends Thread
{
public void run()
{
while(true)
{
try
{
//the current score
scoreLbl.setText(“Score ”+score);
//check the following on every enemy
for(int i = 0; i < enemies.size(); i+ +)
{
JLabel enemy = (JLabel) enemies.get(i);
//only apply the following to onscreen enemies if(enemy.getY()<=450 && enemy.getX()<=450)
{
//move the enemy down, if possible
if(arena[(enemy.getY()/50)+1]
[enemy.getX()/50].equals(“ ”))
{
enemy.setBounds(enemy.getX(),
enemy.getY()+50,50,50);
}
//move the enemy left/right
int direction = (int)(Math.random()*2);
if(direction= =0)
{
if(arena[enemy.getY()/50][(enemy.getX()/50)+1].equals(“ ”))
{
enemy.setBounds(enemy.getX()+50,enemy.getY(),50,50);
}
}
else
{
if(arena[enemy.getY()/50][(enemy.getX()/50)−1].equals(“ ”))
{
enemy.setBounds(enemy.getX()−50,enemy.getY(),50,50);
}
}
//if Oiram jumps on an enemy, remove the enemy if(enemy.getY()−50= =character.getY() && enemy.getX()= =character.getX())
{
enemy.setBounds(1000,1000,50,50);
cont.remove(enemy);
enemyCount− −;
score+=200;
}
//if an enemy eats Oiram, display the losing image Project 45: Oiram—Complicated World
if(enemy.getY()= =character.getY() &&enemy.getX()= =character.getX()) 240
Project 45: Oiram—Complicated World
{
lose.setBounds(0,0,500,500);
cont.setComponentZOrder(lose,0);
for(int j=2; j < cont.getComponentCount(); j++)
{
cont.remove(j);
}
cont.validate();
}
}
}
//get to level 5 to win!
if(level>=5)
{
win.setBounds(0,0,500,500);
cont.setComponentZOrder(win,0);
for(int i = 2; i < cont.getComponentCount(); i++)
{
cont.remove(i);
}
cont.validate();
}
//increase levels
if(enemyCount<=0 && starsLeft<=0)
{
level+ +;
generateStars();
generateEnemies();
levelLbl.setText(“Level “+level+”/5”);
}
//check the following on every star
for(int i = 0; i < stars.size(); i++)
{
JLabel star = (JLabel) stars.get(i);
//if Oiram captures a star, remove it
if(star.getBounds().intersects(character.getBounds()))
{
score+=100;
cont.remove(star);
stars.remove(star);
starsLeft− −;
}
}
//let Oiram fall
if(!jumping)
{
if(arena[(character.getY()/50)+1][character.getX()/50].equals(“ ”))
{
character.setBounds(character.getX(),character.getY()+50,50,50);
}
}
//let Oiram jump
else
{
jumping = false;
if(arena[(character.getY()/50)−1][character.getX()/50].equals(“ ”))
{
character.setBounds(character.getX(),character.getY()−50,50,50);
}
}
241
//delay
Thread.sleep(250);
}
catch(Exception e){ }
}
}
}
public void keyPressed(KeyEvent e){ }
public void keyReleased(KeyEvent e){ }
public void keyTyped(KeyEvent e)
{
//move Oiram left
if(e.getKeyChar()= =‘a’)
{
//check if Oiram is climbing. if so, end the climb if(climbing)
{
climbing = false;
character.setIcon(new ImageIcon(“oiram.png”));
}
//Move Oiram left, if possible
if(character.getX()>=50 &&
arena[character.getY()/50][(character.getX()/50)−1] .equals(“ ”))
{
character.setBounds(character.getX()−50,character.getY(),50,50);
}
}
//move Oiram right
if(e.getKeyChar()= =‘d’)
{
//don’t let Oiram go offscreen!’
if(character.getX()<=400 &&
arena[character.getY()/50][(character.getX()/50)+1].equals(“ ”))
{
character.setBounds(character.getX()+50,character.getY(),50,50);
}
//if Oiram hits a ladder, begin to climb
if(arena[character.getY()/50][(character.getX()/50)+1].equals(“|”))
{
character.setBounds(character.getX()+50,character.getY(),50,50); climbing = true;
character.setIcon(new ImageIcon(“onladder.png”));
}
}
//jump/climb
if(e.getKeyChar()= =‘w’)
{
//if Oiram is not climbing, then jump up!
if(!climbing)
{
if(arena[(character.getY()/50)−1][character.getX()/50].equals(“ ”))
{
if(!jumping && !arena[(character.getY()/50)+1][character.getX()/50].equals(“ ”))
{
jumping = true;
character.setBounds(character.getX(),character.getY()−50,50,50);
}
}
}
//move Oiram up the ladder...
Project 45: Oiram—Complicated World
242

Project 45: Oiram—Complicated World
else
{
character.setBounds(character.getX(),character.getY()−50,50,50);
//Oiram reached the top of the ladder. change his icon
//and move hime over.
if(arena[character.getY()/50][character.getX()/50].equals(“ ”))
{
character.setBounds(character.getX()+50,character.getY(),50,50); climbing = false;
character.setIcon(new ImageIcon(“oiram.png”));
}
}
}
}
public static void main (String[] args)
{
new Oiram();
}
}
Figures 45-1 through 45-3 depict the life and
Change Oiram’s icon into a hot air balloon that death of Oiram.
allows him to drop bombs onto his enemies.
Add sound effects whenever Oiram collects a
star or kills an enemy. Program applause for wins Customizing the game
and boos for losses.
Change the layout of the arena. Add more
Add super-stars that give Oiram temporary
platforms, more ladders, etc.
flying abilities.
Figure 45-1
Level and score display.
243

Increase the size of the board: make each zone Place an invisible enemy within the playing
10 by 10 pixels.
field. When close by, program the screen to
Clone Oiram so that there are two—or even
“shake” to alert the player of Oiram’s enemy’s three—of them in the arena.
whereabouts.
Figure 45-2
Oiram bites the dust.
Project 45: Oiram—Complicated World Figure 45-3 Oiram prevails.
244
Project 46: Java Man—Java Man’s Universe
Project 46: Java Man—Java Man’s Universe
A JavaMan board can be created the same way:
##########
Java Man
#
#
#
#
#
#
Java and C+ +, the two largest programming
#
#
#
languages, battle it out! Maneuver Java Man to
#
##
#
collect all the dots on the field before C+ + drinks him dry.
##
#
#
#
#
#
Project
#
#
#
#
#
#
Begin by creating Java Man’s universe—the game
##########
board.
In the constructor, use a loop to examine each element in the array. The position of the elements Making the game
in the two dimensional array should correspond with their placement on the JFrame. Draw a 50 by To create the course, use a two dimensional array 50 pixel image of a solid yellow block and a 50 by of Strings. Use “#” to represent the walls and a 50 pixel image of a black square with a white
“space” to denote empty areas.
circle inside. Use the yellow block for the “#”
For example, an empty box is shown below:
character and the black block for the empty
space.
####
#
The use of arrays makes it easy to modify the
#
layout of the board.
####
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.awt.geom.*;
public class JavaMan extends JFrame
{
Container cont;
//the 2 dimensional array
String arena[][] =
{{“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”},
{“#”,“ ”,“ ”,“ ”,“#”,“ ”,“ ”,“ ”,“ ”,“#”},
{“#”,“ ”,“#”,“ ”,“#”,“ ”,“ ”,“#”,“ ”,“#”},
{“#”,“ ”,“#”,“ ”,“#”,“ ”,“#”,“#”,“ ”,“#”},
{“#”,“ ”,“#”,“ ”,“ ”,“ ”,“ ”,“#”,“ ”,“#”},
{“#”,“ ”,“#”,“#”,“ ”,“ ”,“ ”,“#”,“ ”,“#”},
{“#”,“ ”,“#”,“ ”,“ ”,“#”,“ ”,“#”,“ ”,“#”},
{“#”,“ ”,“#”,“ ”,“ ”,“#”,“ ”,“#”,“ ”,“#”},
{“#”,“ ”,“ ”,“ ”,“ ”,“#”,“ ”,“ ”,“ ”,“#”},
{“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”}};
245
public JavaMan()
{
super(“JavaMan”);
setSize(500,500);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); cont = getContentPane();
cont.setLayout(null);
cont.setBackground(Color.BLACK);
//create the board
for(int i = 0; i < arena.length; i+ +)
{
for(int j = 0; j < arena[0].length; j++)
{
JLabel lbl = null;
if(arena[i][j].equals(“#”))
{
lbl = new JLabel(new ImageIcon(“border.png”));
}
else
{
lbl = new JLabel(new ImageIcon(“track_full.png”));
}
cont.add(lbl);
lbl.setBounds(i*50,j*50,50,50);
}
}
repaint();
cont.validate();
setContentPane(cont);
}
public static void main (String[] args)
{
new JavaMan();
}
}
Figure 46-1 illustrates Java Man’s universe.
In the next project, bring JavaMan to life! Prepare him for the fight of his life by making him mobile.
Project 46: Java Man—Java Man’s Universe
246

Project 47: Java Man—Java Man Lives!
Figure 46-1
Java Man game board.
Project 47: Java Man—Java Man Lives!
Project
Next, create a thread to move Java Man forward by either adding or subtracting 50 from the x or Place Java Man within the field of play. Then give y coordinates. To prevent Java Man from passing Java Man the power of movement by adding
through the walls, check his position against the keyboard controls to change his direction.
value of the corresponding element in the two
dimensional array. If the element is “#”, move Java Man back one space.
Making the game
Now that you have the course, it’s time to add Java Man. In Microsoft Paint, create a 50 by 50 pixel image of a coffee mug. In the constructor, add this image before you add the board. Set it to the top left corner, position (50,50), as shown in Figure 47-1.
Make Java Man free to move. First, add a
KeyListener to the class. Don’t forget to add the three mandatory methods. Just like in the game Radical Racing, use variables to keep track of Java Man’s orientation (1 represents up, 2 down,
3 right, and 4 left). Now, in the KeyPressed
method, change JavaMan’s direction.
Figure 47-1
Java Man—starting position.
247
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.awt.geom.*;
public class JavaMan extends JFrame implements KeyListener
{
Container cont;
int UP = 0, DOWN = 1, RIGHT = 2, LEFT = 3;
int direction = RIGHT;
int positionX = 1, positionY = 1;
String arena[][] =
{{“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”},
{“#”,“ ”,“ ”,“ ”,“#”,“ ”,“ ”,“ ”,“ ”,“#”},
{“#”,“ ”,“#”,“ ”,“#”,“ ”,“ ”,“#”,“ ”,“#”},
{“#”,“ ”,“#”,“ ”,“#”,“ ”,“#”,“#”,“ ”,“#”},
{“#”,“ ”,“#”,“ ”,“ ”,“ ”,“ ”,“#”,“ ”,“#”},
{“#”,“ ”,“#”,“#”,“ ”,“ ”,“ ”,“#”,“ ”,“#”},
{“#”,“ ”,“#”,“ ”,“ ”,“#”,“ ”,“#”,“ ”,“#”},
{“#”,“ ”,“#”,“ ”,“ ”,“#”,“ ”,“#”,“ ”,“#”},
{“#”,“ ”,“ ”,“ ”,“ ”,“#”,“ ”,“ ”,“ ”,“#”},
{“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”}};
JLabel javaMan = new JLabel(new ImageIcon(“man.PNG”)); public JavaMan()
{
super(“JavaMan”);
setSize(500,500);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); cont = getContentPane();
cont.setLayout(null);
addKeyListener(this);
cont.setBackground(Color.BLACK);
//add JavaMan
cont.add(javaMan);
javaMan.setBounds(50,50,50,50);
for(int i = 0; i < arena.length; i+ +)
{
for(int j = 0; j < arena[0].length; j+ +)
{
JLabel lbl = null;
if(arena[i][j].equals(“#”))
{
lbl = new JLabel(new ImageIcon(“border.png”));
}
else
{
lbl = new JLabel(new ImageIcon(“track_full.png”));
}
cont.add(lbl);
lbl.setBounds(i*50,j*50,50,50);
System.out.println(“X: ”+i*50+“ − − Y: ”+j*50);
}
}
repaint();
Project 47: Java Man—Java Man Lives!
cont.validate();
248
Project 47: Java Man—Java Man Lives!
Runner run = new Runner();
run.start();
setContentPane(cont);
}
public class Runner extends Thread
{
public void run()
{
while(true)
{
try
{
if(direction = = RIGHT)
{
javaMan.setBounds(javaMan.getX()+50,javaMan.getY(),50,50); positionX+ +;
if(arena[positionX][positionY].equals(“#”))
{
javaMan.setBounds(javaMan.getX()−50,javaMan.getY(),50,50); positionX− −;
}
cont.setComponentZOrder(javaMan,1);
}
if(direction = = LEFT)
{
javaMan.setBounds(javaMan.getX()−50,javaMan.getY(),50,50); positionX− −;
if(arena[positionX][positionY].equals(“#”))
{
javaMan.setBounds(javaMan.getX()+50,javaMan.getY(),50,50); positionX+ +;
}
cont.setComponentZOrder(javaMan,1);
}
if(direction = = UP)
{
javaMan.setBounds(javaMan.getX(),javaMan.getY()−50,50,50); positionY− −;
if(arena[positionX][positionY].equals(“#”))
{
javaMan.setBounds(javaMan.getX(),javaMan.getY()+50,50,50); positionY+ +;
}
cont.setComponentZOrder(javaMan,1);
}
if(direction = = DOWN)
{
javaMan.setBounds(javaMan.getX(),javaMan.getY()+50,50,50); positionY+ +;
if(arena[positionX][positionY].equals(“#”))
{
javaMan.setBounds(javaMan.getX(),javaMan.getY()−50,50,50); positionY− −;
}
cont.setComponentZOrder(javaMan,1);
}
cont.validate();
Thread.sleep(500);
}
catch(Exception e){ }
249

}
}
}
public void keyTyped(KeyEvent e)
{
if(e.getKeyChar()= =‘w’)
direction = UP;
if(e.getKeyChar()= =‘a’)
direction = LEFT;
if(e.getKeyChar()= =‘s’)
direction = DOWN;
if(e.getKeyChar()= =‘d’)
direction = RIGHT;
}
public void keyPressed(KeyEvent e){ }
public void keyReleased(KeyEvent e){ }
public static void main (String[] args)
{
new JavaMan();
}
}
Figure 47-2 and 47-3 illustrates Java Man’s mobility.
Java Man is done with training ... it’s time to add the C+ + adversaries. Let’s get going ...
Project 47: Java Man—Java Man Lives! Figure 47-2 Java Man comes to life.
250

Project 48: Java Man—C
Figure 47-3
Java Man moves!
++
Project 48: Java Man—C+ + Attacks
Attacks
Project
direction of the random number (1 represents up, 2 down, 3 left, 4 right). To prevent the enemies Create and unleash the enemies. Although the C++
from running through walls, use the same
enemies blindly move around, they are swift and technique you used in the last project.
relentless!
Next, add an if-statement to the loop. Compare the position of the C+ + enemy and Java Man.
Making the game
If they are the same, Java Man loses. Add a
JOptionPane that tells the player the sad news.
Start by drawing a 50 by 50 pixel image of the While Java Man is avoiding C+ +, he is also
C+ + culprit. In order to keep track of his clones, trying to devour the circles on the game board.
use an array 3 elements large. Each element will When Java Man moves over a circle, replace that hold an enemy that occupies one corner of the
tile of the arena with a 50 by 50 pixel black image.
board. Remember, the movements of the C+ +
Also, decrease the variable that keeps track of the clones are random. To create the movement, make number of remaining circles. When the count
another array 3 elements large in the thread. Each reaches zero, Java Man wins. Use an if-statement element of the new array stores the orientation of to check for the win. If Java Man wins, add a
each C+ + character by holding a random number JOptionPane alerting the player of the victory.
between 1 and 4. Next, move each enemy in the
251
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.awt.geom.*;
public class JavaMan extends JFrame implements KeyListener
{
Container cont;
//the direction
int UP = 0, DOWN = 1, RIGHT = 2, LEFT = 3;
int direction = RIGHT;
int score = 0;
int positionX = 1, positionY = 1;
//the 2 dimensional array
String arena[][] =
{{“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”},
{“#”,“ ”,“ ”,“ ”,“#”,“ ”,“ ”,“ ”,“ ”,“#”},
{“#”,“ ”,“#”,“ ”,“#”,“ ”,“ ”,“#”,“ ”,“#”},
{“#”,“ ”,“#”,“ ”,“#”,“ ”,“#”,“#”,“ ”,“#”},
{“#”,“ ”,“#”,“ ”,“ ”,“ ”,“ ”,“#”,“ ”,“#”},
{“#”,“ ”,“#”,“#”,“ ”,“ ”,“ ”,“#”,“ ”,“#”},
{“#”,“ ”,“#”,“ ”,“ ”,“#”,“ ”,“#”,“ ”,“#”},
{“#”,“ ”,“#”,“ ”,“ ”,“#”,“ ”,“#”,“ ”,“#”},
{“#”,“ ”,“ ”,“ ”,“ ”,“#”,“ ”,“ ”,“ ”,“#”},
{“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”}};
//the JLabel icons
Attacks
JLabel javaMan = new JLabel(new ImageIcon(“man.PNG”)); JLabel enemies[] = {new JLabel(new ImageIcon(“monster.png”)),new JLabel(new ImageIcon (“monster.png”)),new JLabel(new ImageIcon(“monster.png”))}; int dotsLeft = 44;
++
public JavaMan()
{
super(“JavaMan”);
setSize(500,500);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); cont = getContentPane();
cont.setLayout(null);
addKeyListener(this);
cont.setBackground(Color.BLACK);
//add JavaMan
cont.add(javaMan);
javaMan.setBounds(50,50,50,50);
//add the board
for(int i = 0; i < arena.length; i+ +)
{
for(int j = 0; j < arena[0].length; j+ +)
{
JLabel lbl = null;
if(arena[i][j].equals(“#”))
{
lbl = new JLabel(new ImageIcon(“border.png”));
}
else
Project 48: Java Man—C
{
252
Project 48: Java Man—C
lbl = new JLabel(new ImageIcon(“track_full.png”));
}
cont.add(lbl);
lbl.setBounds(i*50,j*50,50,50);
System.out.println(“X: ”+i*50+“ — Y: ”+j*50);
}
}
//set the position of the enemies
cont.add(enemies[0]);
enemies[0].setBounds(400,50,50,50);
cont.setComponentZOrder(enemies[0],1);
cont.add(enemies[1]);
enemies[1].setBounds(50,400,50,50);
cont.setComponentZOrder(enemies[1],1);
cont.add(enemies[2]);
enemies[2].setBounds(400,400,50,50);
cont.setComponentZOrder(enemies[2],1);
repaint();
cont.validate();
Runner run = new Runner();
run.start();
setContentPane(cont);
}
public class Runner extends Thread
{
++
public void run()
{
while(true)
Attacks
{
try
{
//check if JavaMan wins
if(dotsLeft<=0)
{
JOptionPane.showMessageDialog(null,“You Win!”);
}
//enemy movement loop
int dir[] = new int[3];
for(int i = 0; i < dir.length; i+ +)
{
dir[i] = (int)(Math.random()*4);
if(dir[i]= =UP)
{
enemies[i].setBounds(enemies[i].getX(),enemies[i].getY()−50,50,50); if(arena[enemies[i].getX()/50]
[enemies[i].getY()/50].equals(“#”))
{
enemies[i].setBounds(enemies[i].getX(),enemies[i].getY()+50,50,50);
}
}
if(dir[i]= =DOWN)
{
enemies[i].setBounds(enemies[i].getX(),enemies[i].getY()+50,50,50); if(arena[enemies[i].getX()/50]
[enemies[i].getY()/50].equals(“#”))
{
enemies[i].setBounds(enemies[i].getX(),enemies[i].getY()−50,50,50);
}
253
}
if(dir[i]= =LEFT)
{
enemies[i].setBounds(enemies[i].getX()−50,enemies[i].getY(),50,50); if(arena[enemies[i].getX()/50]
[enemies[i].getY()/50].equals(“#”))
{
enemies[i].setBounds(enemies[i].getX()+50,enemies[i].getY(),50,50);
}
}
if(dir[i]= =RIGHT)
{
enemies[i].setBounds(enemies[i].getX()+50,enemies[i].getY(),50,50); if(arena[enemies[i].getX()/50][enemies[i].getY()/50].equals(“#”))
{
enemies[i].setBounds(enemies[i].getX()−50,enemies[i].getY(),50,50);
}
}
//you lose!
if(enemies[i].getX()/50= =positionX && enemies[i].getY()/50= =positionY)
{
JOptionPane.showMessageDialog(null,”You Lose!”);
}
cont.setComponentZOrder(enemies[i],1);
}
//remove the circle
if(arena[positionX][positionY].equals(“ ”))
{
arena[positionX][positionY] = “.”;
Attacks
dotsLeft− −;
JLabel lbl = new JLabel(new ImageIcon(“track_empty.png”)); cont.add(lbl);
lbl.setBounds(positionX*50,positionY*50,50,50);
++
cont.setComponentZOrder(lbl,1);
score+ +;
}
//move Java Man
if(direction = = RIGHT)
{
javaMan.setBounds(javaMan.getX()+50,javaMan.getY(),50,50); positionX+ +;
if(arena[positionX][positionY].equals(“#”))
{
javaMan.setBounds(javaMan.getX()−50,javaMan.getY(),50,50); positionX− −;
}
cont.setComponentZOrder(javaMan,1);
}
if(direction = = LEFT)
{
javaMan.setBounds(javaMan.getX()−50,javaMan.getY(),50,50); positionX− −;
if(arena[positionX][positionY].equals(“#”))
{
javaMan.setBounds(javaMan.getX()+50,javaMan.getY(),50,50); positionX+ +;
}
cont.setComponentZOrder(javaMan,1);
}
Project 48: Java Man—C
if(direction = = UP)
254
Project 48: Java Man—C
{
javaMan.setBounds(javaMan.getX(),javaMan.getY()−50,50,50); positionY− −;
if(arena[positionX][positionY].equals(“#”))
{
javaMan.setBounds(javaMan.getX(),javaMan.getY()+50,50,50); positionY+ +;
}
cont.setComponentZOrder(javaMan,1);
}
if(direction = = DOWN)
{
javaMan.setBounds(javaMan.getX(),javaMan.getY()+50,50,50); positionY+ +;
if(arena[positionX][positionY].equals(“#”))
{
javaMan.setBounds(javaMan.getX(),javaMan.getY()−50,50,50); positionY− −;
}
cont.setComponentZOrder(javaMan,1);
}
cont.validate();
Thread.sleep(500);
}
catch(Exception e){ }
}
}
++
}
public void keyTyped(KeyEvent e)
{
Attacks
if(e.getKeyChar()= =‘w’)
direction = UP;
if(e.getKeyChar()==‘a’)
direction = LEFT;
if(e.getKeyChar()==‘s’)
direction = DOWN;
if(e.getKeyChar()==‘d’)
direction = RIGHT;
}
public void keyPressed(KeyEvent e){ }
public void keyReleased(KeyEvent e){ }
public static void main (String[] args)
{
new JavaMan();
}
}
Figures 48-1 through 48-3 depict Java Man’s
Keep reading to learn how to add more eye-
quest for survival.
catching win/lose images.
255

Figure 48-1
C++ lives!
Attacks
++
Figure 48-2
Java Man chomps up the dots.
Project 48: Java Man—C
256

Project 49: Java Man—Obituaries
Figure 48-3
C++ wins
Project 49: Java Man—Obituaries
Project
500 pixel images: one of C+ + drinking spilled coffee from the fallen Java Man; the other, a
Turn up the graphic impact of the win/lose display.
defeated C+ + falling into the hot cup of Java.
In the constructor, add these two images
Making the game
offscreen. When there is a win or loss, replace the JOptionPane code with the setBounds method.
Replace those dull JOptionPanes with something Don’t forget to use a loop to remove all other fresh! Use Microsoft Paint to draw two 500 by
components!
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.awt.geom.*;
public class JavaMan extends JFrame implements KeyListener
{
Container cont;
int UP = 0, DOWN = 1, RIGHT = 2, LEFT = 3;
//the direction of JavaMan
int direction = RIGHT;
int score = 0;
257
//JavaMan’s position
int positionX = 1, positionY = 1;
//the two dimensional array
String arena[][] =
{{“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”},
{“#”,“ ”,“ ”,“ ”,“#”,“ ”,“ ”,“ ”,“ ”,“#”},
{“#”,“ ”,“#”,“ ”,“#”,“ ”,“ ”,“#”,“ ”,“#”},
{“#”,“ ”,“#”,“ ”,“#”,“ ”,“#”,“#”,“ ”,“#”},
{“#”,“ ”,“#”,“ ”,“ ”,“ ”,“ ”,“#”,“ ”,“#”},
{“#”,“ ”,“#”,“#”,“ ”,“ ”,“ ”,“#”,“ ”,“#”},
{“#”,“ ”,“#”,“ ”,“ ”,“#”,“ ”,“#”,“ ”,“#”},
{“#”,“ ”,“#”,“ ”,“ ”,“#”,“ ”,“#”,“ ”,“#”},
{“#”,“ ”,“ ”,“ ”,“ ”,“#”,“ ”,“ ”,“ ”,“#”},
{“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”,“#”}};
//the JLabels
JLabel javaMan = new JLabel(new ImageIcon(“man.PNG”)); JLabel enemies[] = {new JLabel(new ImageIcon(“monster.png”)),new JLabel(new ImageIcon (“monster.png”)),new JLabel(new ImageIcon(“monster.png”))}; JLabel win = new JLabel(new ImageIcon(“win.png”)); JLabel lose = new JLabel(new ImageIcon(“lose.png”)); int dotsLeft = 44;
public JavaMan()
{
super(“JavaMan”);
setSize(500,500);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); cont = getContentPane();
cont.setLayout(null);
addKeyListener(this);
cont.setBackground(Color.BLACK);
cont.add(win);
win.setBounds(500,500,500,500);
cont.add(lose);
lose.setBounds(500,500,500,500);
//add JavaMan
cont.add(javaMan);
javaMan.setBounds(50,50,50,50);
//create the arena
for(int i = 0; i < arena.length; i+ +)
{
for(int j = 0; j < arena[0].length; j++)
{
JLabel lbl = null;
if(arena[i][j].equals(“#”))
{
lbl = new JLabel(new ImageIcon(“border.png”));
}
else
{
lbl = new JLabel(new ImageIcon(“track_full.png”));
}
cont.add(lbl);
lbl.setBounds(i*50,j*50,50,50);
System.out.println(“X: ”+i*50+“ − − Y: ”+j*50);
}
}
Project 49: Java Man—Obituaries
258
Project 49: Java Man—Obituaries
//add the enemies
cont.add(enemies[0]);
enemies[0].setBounds(400,50,50,50);
cont.setComponentZOrder(enemies[0],1);
cont.add(enemies[1]);
enemies[1].setBounds(50,400,50,50);
cont.setComponentZOrder(enemies[1],1);
cont.add(enemies[2]);
enemies[2].setBounds(400,400,50,50);
cont.setComponentZOrder(enemies[2],1);
repaint();
cont.validate();
Runner run = new Runner();
run.start();
setContentPane(cont);
}
public class Runner extends Thread
{
public void run()
{
while(true)
{
try
{
//check if JavaMan wins
if(dotsLeft<=0)
{
win.setBounds(0,0,500,500);
cont.setComponentZOrder(win,0);
for(int j = 2; j < cont.getComponentCount(); j+ +)
{
cont.remove(j);
}
}
//control the C+ +
int dir[] = new int[3];
for(int i = 0; i < dir.length; i+ +)
{
//get the random direction
dir[i] = (int)(Math.random()*4);
if(dir[i]= =UP)
{
enemies[i].setBounds(enemies[i].getX(),enemies[i].getY()−50,50,50); if(arena[enemies[i].getX()/50]
[enemies[i].getY()/50].equals(“#”))
{
enemies[i].setBounds(enemies[i].getX(),enemies[i].getY()+50,50,50);
}
}
if(dir[i]= =DOWN)
{
enemies[i].setBounds(enemies[i].getX(),enemies[i].getY()+50,50,50); if(arena[enemies[i].getX()/50]
[enemies[i].getY()/50].
equals(“#”))
{
enemies[i].setBounds(enemies[i].getX(),enemies[i].getY()−50,50,50);
}
}
if(dir[i]= =LEFT)
259
{
enemies[i].setBounds(enemies[i].getX()-50,enemies[i].getY(),50,50); if(arena[enemies[i].getX()/50]
[enemies[i].getY()/50].equals(“#”))
{
enemies[i].setBounds(enemies[i].getX()+50,enemies[i].getY(),50,50);
}
}
if(dir[i]= =RIGHT)
{
enemies[i].setBounds(enemies[i].getX()+50,enemies[i].getY(),50,50); if(arena[enemies[i].getX()/50]
[enemies[i].getY()/50].equals(“#”))
{
enemies[i].setBounds(enemies[i].getX()-50,enemies[i].getY(),50,50);
}
}
if(enemies[i].getX()/50= =positionX && enemies[i].getY()/50= =positionY)
{
lose.setBounds(0,0,500,500);
cont.setComponentZOrder(lose,0);
for(int j = 2; j < cont.getComponentCount(); j+ +)
{
cont.remove(j);
}
}
cont.setComponentZOrder(enemies[i],1);
}
//remove the dot
if(arena[positionX][positionY].equals(“ ”))
{
arena[positionX][positionY] = “.”;
dotsLeft− −;
JLabel lbl = new JLabel(new ImageIcon(“track_empty.png”)); cont.add(lbl);
lbl.setBounds(positionX*50,positionY*50,50,50);cont.setComponentZOrder(lbl,1);s core+ +;
}
//move Java Man
if(direction = = RIGHT)
{
javaMan.setBounds(javaMan.getX()+50,javaMan.getY(),50,50); positionX+ +;
if(arena[positionX][positionY].equals(“#”))
{
javaMan.setBounds(javaMan.getX()−50,javaMan.getY(),50,50); positionX− −;
}
cont.setComponentZOrder(javaMan,1);
}
if(direction = = LEFT)
{
javaMan.setBounds(javaMan.getX()−50,javaMan.getY(),50,50); positionX− −;
if(arena[positionX][positionY].equals(“#”))
{
javaMan.setBounds(javaMan.getX()+50,
javaMan.getY(),50,50);
positionX+ +;
}
cont.setComponentZOrder(javaMan,1);
Project 49: Java Man—Obituaries
}
260
Project 49: Java Man—Obituaries
if(direction = = UP)
{
javaMan.setBounds(javaMan.getX(),javaMan.getY()-50,50,50); positionY− −;
if(arena[positionX][positionY].equals(“#”))
{
javaMan.setBounds(javaMan.getX(),javaMan.getY()+50,50,50); positionY+ +;
}
cont.setComponentZOrder(javaMan,1);
}
if(direction = = DOWN)
{
javaMan.setBounds(javaMan.getX(),javaMan.getY()+50,50,50); positionY+ +;
if(arena[positionX][positionY].equals(“#”))
{
javaMan.setBounds(javaMan.getX(),java
Man.getY()-50,50,50);
positionY− −;
}
cont.setComponentZOrder(javaMan,1);
cont.setComponentZOrder(win,1);
cont.setComponentZOrder(lose,1);
}
cont.validate();
Thread.sleep(500);
}
catch(Exception e){ }
}
}
}
public void keyTyped(KeyEvent e)
{
if(e.getKeyChar()= =‘w’)
direction = UP;
if(e.getKeyChar()= =‘a’)
direction = LEFT;
if(e.getKeyChar()= =‘s’)
direction = DOWN;
if(e.getKeyChar()= =‘d’)
direction = RIGHT;
}
public void keyPressed(KeyEvent e){ }
public void keyReleased(KeyEvent e){ }
public static void main (String[] args)
{
new JavaMan();
}
}
Figures 49-1 through 49-3 illustrate Java Man
Add more enemies.
versus C+ +.
Change the icons of the players to laser ships or geometric shapes.
Customizing the game
Speed up or slow down the game ... or, make
speed freak zones within the field.
Change the pathway of the board or, make it an open field.
261

Add special dots that give Java Man
Add fun slurping sounds when Java Man loses
superpowers.
and splashing sounds when Java Man wins.
Instead of random movements, make the C++
Add a sink hole on the board that vaporizes
chase Java Man.
anything crossing its path.
Change the win/lose images.
Figure 49-1
Battle.
Project 49: Java Man—Obituaries Figure 49-2 C++ wins 262

Project 49: Java Man—Obituaries
Figure 49-3
Java Man is victorious!
263
This page intentionally left blank

Section Seven
Brain Busters
Project 50: Memory—Grid Design
Memory
Although the biochemical process of memory
remains a mystery, you can test yours by playing this game. A set of images flashes before your Figure 50-1
Sample image.
eyes. The challenge? Match the identical pictures before time runs out.
Then, initialize a normal array of ints that stores the number of times each image is used. This will Project
prevent images from appearing more than twice.
Now, use two for loops to go through the
Plan and develop the 16 grid game frame.
JButton array. At each iteration, create a random number between 1 and 8, inclusive. Using the
Making the game
normal array you created earlier, check whether the image corresponding to the random number
The game, “Memory,” consists of a 4 by 4 grid
has been used more than once. If so, generate a containing eight pairs of images. You will learn how new random number. Once a satisfactory random
to integrate photographs to create the images of your number has been generated, increment by one the choosing in Project 53. For now, however, simply appropriate value in the single dimensional array.
draw eight 100 by 100 pixel images and name them Don’t forget to set the icon of the JButton to your
“img1.png,” “img2.png,” etc. In each generic image, new image. How do you keep track of the location write the image number, as shown in Figure 50-1.
of each image? Easy! Create a two dimensional
global array 8 ints long. Set the appropriate
Now that you have created the images, store
element to the random number.
them in a two dimensional array of JButtons that is 4 by 4 elements large. In the constructor, use two Now that the images are displayed, you need to hide them. Use a Thread.sleep method and pause for loops to add the JButtons to the JFrame.
Don’t attach the images you created just yet ...
instead, attach a new 100 by 100 pixel image, like the one shown in Figure 50-2, that displays the name of the game (“Memory”).
Next, create a method that randomly assigns
your images to the JButtons. To do this, use the Thread.sleep method to pause for half a second.
Figure 50-2
“Memory” image.
265
for 3 seconds to give players a chance to memorize Set the icons back to the starting image (the one the images. Then, make a new set of two for loops.
that says “Memory”).
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
public class Memory extends JFrame
{
//the blank image
ImageIcon blank = new ImageIcon(“blank.png”);
//the buttons
JButton buttons[][] = {{new JButton(blank),new JButton(blank), new JButton(blank),new JButton(blank)},
{new JButton(blank),new JButton(blank),
new JButton(blank),new JButton(blank)},
{new JButton(blank),new JButton(blank),
new JButton(blank),new JButton(blank)},
{new JButton(blank),new JButton(blank),
new JButton(blank),new JButton(blank)}};
//the locations of the images
int locations[][] = {{0,0,0,0},{0,0,0,0},{0,0,0,0}, {0,0,0,0}}; Container cont;
public Memory()
{
super(“Memory”);
setSize(415,500);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); cont = getContentPane();
cont.setLayout(null);
for(int i = 0; i <buttons[0].length; i++)
{
for(int j = 0; j <buttons.length; j+ +)
{
//add the button to the board
cont.add(buttons[i][j]);
buttons[i][j].setBounds(i*100,j*100,100,100);
}
}
mixup();
}
public void mixup()
{
try
{
//pause
Thread.sleep(500);
//this prevent an image from being used more than twice int usedCount[] = {0,0,0,0,0,0,0,0};
for(int i = 0; i < buttons[0].length; i++)
{
for(int j = 0; j < buttons.length; j++)
{
//create a random number
int rand = (int)(Math.random()*8)+1;
Project 50: Memory—Grid Design
while(usedCount[rand − 1]>1)
{
266

Project 50: Memory—Grid Design
//find a better random number
rand = (int)(Math.random()*8)+1;
}
//don’t use an image more than twice!
usedCount[rand−1]+ +;
//set the image
buttons[i][j].setIcon(new ImageIcon(“img”+rand+”.png”));
//keep track of the images
locations[i][j] = rand;
cont.validate();
}
}
//pause
Thread.sleep(3000);
//two for loops
for(int i = 0; i < buttons[0].length; i++)
{
for(int j = 0; j < buttons.length; j++)
{
//change the icons back
buttons[i][j].setIcon(blank);
cont.validate();
}
}
}
catch(Exception e){}
}
public static void main (String[] args)
{
new Memory();
}
}
Figure 50-3
Display of “Memory” images.
267

Figure 50-4
Numbered images on the JFrame.
Project 50: Memory—Grid Design Figure 50-5 Return of “Memory” images.
268
Project 51: Memory—Match Time
Figures 50-3 through 50-5 illustrate the initial The next step: challenging the players to match Memory game board.
the images. Read on!
Project 51: Memory—Match Time
Project
global variables and to set the boolean that
represents the turn number to the second position.
Construct the code that allows the player to test When it is the player’s second turn, iterate
his/her memory by matching images.
through all of the buttons in the array. Use the e.getSource() method to check whether the button Making the game
selected is the current one in the loop. If so, change the icon and set the button, row, and
Start by implementing ActionListener. Remember column numbers in global variables. Set the
to add it to each button in the loop. Keep in mind boolean that represents whether the computer
that each guess consists of two clicks: the first is needs to check for a match to “true.” Also, set the the base image; the second is the matching image.
other boolean that represents whether it is the Now, create two booleans: one to represent a
player’s first click to “true.”
player’s first image click; another to represent the It’s now time to create a Thread. In the thread’s second. In the actionPerformed method, check the loop, use an if-statement to determine whether the first boolean to confirm it is the player’s first click.
boolean that represents if the board should be If so, use a for loop to iterate through all of the checked for a win is “true.” If so, pause the game buttons. Use the e.getSource() method to check for half a second. Next, check if the two images whether the button selected is the current one in selected by the player are different (i.e. incorrect the loop. If confirmed, hold the image number in a guess). If so, reset the board by setting both icons to global variable. Then, set the icon of the button to the original image. If the two images are identical the appropriate image. Don’t forget to keep track (i.e. correct guess), the images will remain revealed.
of the row and column numbers of the button in import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
public class Memory extends JFrame implements ActionListener
{
//the blank image
ImageIcon blank = new ImageIcon(“blank.png”);
//the array of buttons
JButton buttons[][] = {{new JButton(blank),new JButton(blank), new JButton(blank),new JButton(blank)},
{new JButton(blank),new JButton(blank),
new JButton(blank),new JButton(blank)},
{new JButton(blank),new JButton(blank),
new JButton(blank),new JButton(blank)},
269
{new JButton(blank),new JButton(blank),
new JButton(blank),new JButton(blank)}};
//the image that is at each button
int locations[][] = {{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}; Container cont;
//whether the player has guessed once
boolean guessedOne = false;
boolean readyToCheck = false;
//the first guess
int firstGuess;
//the first guess pos 1 in the array
int firstGuessPos1;
//the first guess pos 2 in the array
int firstGuessPos2;
//the second guess
int secGuess;
//the second guess pos 1 in the array
int secGuessPos1;
//the second guess pos 2 in the array
int secGuessPos2;
public Memory()
{
super(“Memory”);
setSize(415,500);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); cont = getContentPane();
cont.setLayout(null);
//the Memory images
for(int i = 0; i <buttons[0].length; i ++)
{
for(int j = 0; j < buttons.length; j + +)
{
cont.add(buttons[i][j]);
buttons[i][j].setBounds(i*100,j*100,100,100);
buttons[i][j].addActionListener(this);
}
}
mixup();
Checker checker = new Checker();
checker.start();
}
public class Checker extends Thread
{
public void run()
{
while(true)
{
if(readyToCheck)
{
try
{
sleep(500);
}
catch(Exception ex){ }
if(firstGuess!=secGuess)
{
//if it is wrong, reset the images
Project 51: Memory—Match Time
270
Project 51: Memory—Match Time
buttons[firstGuessPos1][firstGuessPos2].setIcon(blank); buttons[secGuessPos1][secGuessPos2].setIcon(blank);
}
readyToCheck = false;
}
}
}
}
public void mixup()
{
try
{
//pause
Thread.sleep(500);
//this prevent an image from being used more than twice int usedCount[] = {0,0,0,0,0,0,0,0};
for(int i = 0; i < buttons[0].length; i++)
{
for(int j = 0; j < buttons.length; j++)
{
//create a random number
int rand = (int)(Math.random()*8)+1;
while(usedCount[rand −1]>1)
{
//find a better random number
rand = (int)(Math.random()*8)+1;
}
//don’t use an image more than twice!
usedCount[rand−1]+ +;
//set the image
buttons[i][j].setIcon(new ImageIcon (“img”+rand+”.png”));
//keep track of the images
locations[i][j] = rand;
cont.validate();
}
}
//pause
Thread.sleep(3000);
//two for loops
for(int i = 0; i < buttons[0].length; i++)
{
for(int j = 0; j < buttons.length; j++)
{
//change the icons back
buttons[i][j].setIcon(blank);
cont.validate();
}
}
}
catch(Exception e){}
}
public void actionPerformed(ActionEvent e)
{
//if it is the first guess
if(!guessedOne)
{
for(int i = 0; i < buttons[0].length; i++)
{
for(int j = 0; j < buttons.length; j++)
{
271
if(e.getSource()= =buttons[i][j])
{
//display the image
int picNum = locations[i][j];
buttons[i][j].setIcon(new ImageIcon(“img”+picNum+”.png”)); firstGuess = picNum;
firstGuessPos1 = i;
firstGuessPos2 = j;
}
}
}
guessedOne = true;
}
//if it is the second guess
else
{
for(int i = 0; i < buttons[0].length; i++)
{
for(int j = 0; j < buttons.length; j++)
{
if(e.getSource()= =buttons[i][j])
{
//display the image
int picNum = locations[i][j];
buttons[i][j].setIcon(new ImageIcon (“img”+picNum+“.png”)); secGuess = picNum;
secGuessPos1 = i;
secGuessPos2 = j;
cont.validate();
}
}
//let the thread check for a win
guessedOne = false;
readyToCheck = true;
}
}
}
public static void main (String[] args)
{
new Memory();
}
}
Figures 51-1 through 51-3 displays the play
The player’s satisfaction in completing
sequence of Memory.
the first level is short-lived as you create
more levels with more intense challenges.
Project 51: Memory—Match Time
272

Project 51: Memory—Match Time
Figure 51-1
Game begins.
Figure 51-2
On the verge of a win.
273

Figure 51-3
Victory!
Project 52: Memory—Beat the Clock
Project
variable that represents the time remaining from the maximum time. Then, set the time left variable Complications ... with a twist. The player must to the new maximum time.
beat his/her own time from the previous round.
Create a new Thread. In the infinite loop, delay The better you are, the harder it gets.
for one second and then subtract one from the
variable that represents the time remaining in the Making the Game
round. Display the time remaining in a JLabel. You can change the font to make it look like the
In order to create the timer, make two global
example in Figure 52-1.
variables: one that represents the allotted time given for the round, the other the time remaining in each round. Next, in the method that mixes up the icons (refer to Project 50), increment by one a new variable that keeps track of the level count.
Project 52: Memory—Beat the Clock Find the new maximum time by subtracting the Figure 52-1
JLabel displays time remaining
274
Project 52: Memory—Beat the Clock
Now, in the thread from Project 51, make a new the method that randomizes the images. If the time if-statement that checks whether the player’s guess left variable is less than or equal to one, use a is correct. If so, subtract one from the variable that JOptionPane to alert the player that he/she has lost keeps track of the number of pairs left. If that the game.
number is zero, it is time for the next round. Call import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
public class Memory extends JFrame implements ActionListener
{
//the blank image
ImageIcon blank = new ImageIcon(“blank.png”);
//the array of buttons
JButton buttons[][] = {{new JButton(blank),new JButton(blank), new JButton(blank),new JButton(blank)},
{new JButton(blank),new JButton(blank),
new JButton(blank),new JButton(blank)},
{new JButton(blank),new JButton(blank),
new JButton(blank),new JButton(blank)},
{new JButton(blank),new JButton(blank),
new JButton(blank),new JButton(blank)}};
//the image that is at each button
int locations[][] = {{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}; Container cont;
//whether the player has guessed once
boolean guessedOne = false;
//the first guess
int firstGuess;
//the first guess pos 1 in the array
int firstGuessPos1;
//the first guess pos 2 in the array
int firstGuessPos2;
//the second guess
int secGuess;
//the second guess pos 1 in the array
int secGuessPos1;
//the second guess pos 2 in the array
int secGuessPos2;
//the number of pairs remaining
int pairsLeft = 8;
//whether the thread should check for a win
boolean readyToCheck = false;
//starting time
int maxTime = 90;
//remaining time
int timeLeft = 0;
//current level
int levelCount = 0;
JLabel time = new JLabel(“Time Remaining: ” + timeLeft); public Memory()
{
super(“Memory”);
setSize(415,500);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 275
cont = getContentPane();
cont.setLayout(null);
//the Memory images
for(int i = 0; i < buttons[0].length; i++)
{
for(int j = 0; j <buttons.length; j+ +)
{
cont.add(buttons[i][j]);
buttons[i][j].setBounds(i*100,j*100,100,100);
buttons[i][j].addActionListener(this);
}
}
cont.add(time);
time.setBounds(130,385,300,100);
time.setFont(new Font(“arial”, Font.BOLD, 14)); mixup();
Checker checker = new Checker();
checker.start();
Counter count = new Counter();
count.start();
}
public class Counter extends Thread
{
public void run()
{
while(true)
{
//count down the time
timeLeft− −;
time.setText(“Time Remaining: ”+timeLeft);
try
{
Thread.sleep(1000);
}
catch(Exception e){}
}
}
}
public class Checker extends Thread
{
public void run()
{
while(true)
{
if(readyToCheck)
{
try
{
sleep(500);
}
catch(Exception ex){}
//if the guess is correct, remove a pair
if(firstGuess= =secGuess)
{
pairsLeft− −;
}
else
{
Project 52: Memory—Beat the Clock
//if it is wrong, reset the images
276
Project 52: Memory—Beat the Clock
buttons[firstGuessPos1][firstGuessPos2].setIcon(blank); buttons[secGuessPos1][secGuessPos2].setIcon(blank);
}
readyToCheck = false;
}
if(pairsLeft<=0)
{
//if the user wins, start the next level
mixup();
}
//if the time is up, display an image
if(timeLeft<0)
{
JOptionPane.showMessageDialog(null, "YOU LOSE!");break;
}
}
}
}
public void mixup()
{
levelCount+ +;
maxTime = maxTime−timeLeft;
timeLeft = maxTime;
pairsLeft = 8;
try
{
//pause
Thread.sleep(500);
//this prevent an image from being used more than twice int usedCount[] = {0,0,0,0,0,0,0,0};
for(int i = 0; i < buttons[0].length; i++)
{
for(int j = 0; j < buttons.length; j++)
{
//create a random number
int rand = (int)(Math.random()*8)+1;
while(usedCount[rand−1]>1)
{
//find a better random number
rand = (int)(Math.random()*8)+1;
}
//don’t use an image more than twice!
usedCount[rand−1]+ +;
//set the image
buttons[i][j].setIcon(new ImageIcon(“img”+rand+“.png”));
//keep track of the images
locations[i][j] = rand;
cont.validate();
}
}
//pause
Thread.sleep(3000);
//two for loops
for(int i = 0; i < buttons[0].length; i++)
{
for(int j = 0; j < buttons.length; j++)
{
//change the icons back
buttons[i][j].setIcon(blank);
cont.validate();
277
}
}
}
catch(Exception e){}
}
public void actionPerformed(ActionEvent e)
{
//if it is the first guess
if(!guessedOne)
{
for(int i = 0; i < buttons[0].length; i++)
{
for(int j = 0; j < buttons.length; j++)
{
if(e.getSource()= =buttons[i][j])
{
//display the image
int picNum = locations[i][j];
buttons[i][j].setIcon(new ImageIcon(“img”+picNum+”.png”)); firstGuess = picNum;
firstGuessPos1 = i;
firstGuessPos2 = j;
}
}
}
guessedOne = true;
}
//if it is the second guess
else
{
for(int i = 0; i < buttons[0].length; i++)
{
for(int j = 0; j < buttons.length; j++)
{
if(e.getSource()= =buttons[i][j])
{
//display the image
int picNum = locations[i][j];
buttons[i][j].setIcon(new ImageIcon(“img”+picNum+“.png”)); secGuess = picNum;
secGuessPos1 = i;
secGuessPos2 = j;
cont.validate();
}
}
//let the thread check for a win
guessedOne = false;
readyToCheck = true;
}
}
}
public static void main (String[] args)
{
new Memory();
}
}
Project 52: Memory—Beat the Clock
278

Project 52: Memory—Beat the Clock
Figures 52-2 and 52-3 illustrate the rush to beat Open up a world of possibilities by using
the clock.
photographs to customize your game. Next ...
Figure 52-2
Countdown.
Figure 52-3
A heartbreaking loss .
279

Project 53: Memory—Photo Finish
Project
Now that the image has been properly sized,
select “Save As” and overwrite the generic image Here’s your chance to let your evil mind drive the you created in the first project.
players into madness. Pick a group of photos to Now it’s time to create the performance
use as the matching images. Make them as subtle announcements that appear at the end of the game.
as you want to increase the difficulty of the game There are three images/phrases that correspond to and confuse the players. You will also insert
great, mediocre, or poor performances. Draw a fun announcement graphics to let the players know
icon and create an innovative phrase for each rank.
how well—or how poorly—they performed.
Figures 53-2 through 53-4 illustrate a few
examples.
Making the game
When the player loses, use a loop to remove all components from the container. Next, create a new Photograph eight random objects. Transfer them to JLabel that displays the number of levels the
your computer and open them with Microsoft
player has completed. Place the JLabel in the
Paint. Press “Ctrl+A” to select each image and center of the JFrame. Now, you need to know
drag it until “100,100” pixels is displayed on the which image to display for the current level. If the bottom right, as shown in Figure 53-1.
player reaches level seven or above, place the Project 53: Memory—Photo Finish Figure 53-1 Photograph resized to 100 by 100 pixels.
280

Project 53: Memory—Photo Finish
image that represents the highest rank
rank (Figure 53-2). And don’t forget to use the (Figure 53-4). If the player reaches levels three setComponentZOrder method to place the JLabel
through six, display the image representing the in front of the image representing the player’s middle rank (Figure 53-3). For levels zero through standing.
five, display the image representing the lowest Figure 53-2
Lowest possible rank—Remember to
Figure 53-3
Middle rank—Evil, but not a Genius.
keep trying.
Figure 53-4
Highest rank—Evil Genius!
281
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
public class Memory extends JFrame implements ActionListener
{
//the blank image
ImageIcon blank = new ImageIcon(“blank.png”);
//the array of buttons
JButton buttons[][] = {{new JButton(blank),new JButton(blank), new JButton(blank),new JButton(blank)},
{new JButton(blank),new JButton(blank),
new JButton(blank),new JButton(blank)},
{new JButton(blank),new JButton(blank),
new JButton(blank),new JButton(blank)},
{new JButton(blank),new JButton(blank),
new JButton(blank),new JButton(blank)}};
//the image that is at each button
int locations[][] = {{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}}; Container cont;
//whether the player has guessed once
boolean guessedOne = false;
//the first guess
int firstGuess;
//the first guess pos 1 in the array
int firstGuessPos1;
//the first guess pos 2 in the array
int firstGuessPos2;
//the second guess
int secGuess;
//the second guess pos 1 in the array
int secGuessPos1;
//the second guess pos 2 in the array
int secGuessPos2;
//the number of pairs remaining
int pairsLeft = 8;
//whether the thread should check for a win
boolean readyToCheck = false;
//starting time
int maxTime = 90;
//remaining time
int timeLeft = 0;
//current level
int levelCount = 0;
JLabel time = new JLabel(“Time Remaining: ” + timeLeft); public Memory()
{
super(“Memory”);
setSize(415,500);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); cont = getContentPane();
cont.setLayout(null);
//the Memory images
for(int i = 0; i < buttons[0].length; i++)
{
for(int j = 0; j < buttons.length; j+ +)
Project 53: Memory—Photo Finish
{
cont.add(buttons[i][j]);
282
Project 53: Memory—Photo Finish
buttons[i][j].setBounds(i*100,j*100,100,100);
buttons[i][j].addActionListener(this);
}
}
cont.add(time);
time.setBounds(130,385,300,100);
time.setFont(new Font(“arial”, Font.BOLD, 14)); mixup();
Checker checker = new Checker();
checker.start();
Counter count = new Counter();
count.start();
}
public class Counter extends Thread
{
public void run()
{
while(true)
{
//count down the time
timeLeft − −;
time.setText(“Time Remaining: ”+timeLeft);
try
{
Thread.sleep(1000);
}
catch(Exception e){}
}
}
}
public class Checker extends Thread
{
public void run()
{
while(true)
{
if(readyToCheck)
{
try
{
sleep(500);
}
catch(Exception ex){}
//if the guess is correct, remove a pair
if(firstGuess= =secGuess)
{
pairsLeft− −;
}
else
{
//if it is wrong, reset the images
buttons[firstGuessPos1][firstGuessPos2].setIcon(blank); buttons[secGuessPos1][secGuessPos2].setIcon(blank);
}
readyToCheck = false;
}
if(pairsLeft<=0)
{
//if the user wins, start the next level
283
mixup();
}
//if the time is up, display an image
if(timeLeft<0)
{
//remove the other components
for(int i = 0; i <buttons[0].length; i+ +)
{
for(int j = 0; j <buttons.length; j+ +)
{
cont.remove(buttons[i][j]);
}
}
cont.remove(time);
JLabel levelLbl = new JLabel(“- - - Levels Completed: “+ (levelCount−1)+” - - -”); cont.add(levelLbl);
levelLbl.setForeground(Color.white);
levelLbl.setFont(new Font(“arial narrow”, Font.PLAIN, 20)); levelLbl.setBounds(115,385,300,50);
if(levelCount>=7)
{
//evil genius status
JLabel help = new JLabel(new ImageIcon (“genius.png”)); cont.add(help);
help.setBounds(0,0,415,500);
}
else if (levelCount>=3)
{
//evil but not genius
JLabel help = new JLabel(new ImageIcon(“notGenius.png”)); cont.add(help);
help.setBounds(0,0,415,500);
}
else
{
//you need to practice
JLabel help = new JLabel(new ImageIcon(“needHelp.png”)); cont.add(help);
help.setBounds(0,0,415,500);
}
cont.setComponentZOrder(levelLbl,0);
cont.validate();
break;
}
}
}
}
public void mixup()
{
levelCount+ +;
maxTime = maxTime−timeLeft;
timeLeft = maxTime;
pairsLeft = 8;
try
{
//pause
Thread.sleep(500);
//this prevent an image from being used more than twice int usedCount[] = {0,0,0,0,0,0,0,0};
Project 53: Memory—Photo Finish
284
Project 53: Memory—Photo Finish
for(int i = 0; i < buttons[0].length; i++)
{
for(int j = 0; j < buttons.length; j++)
{
//create a random number
int rand = (int)(Math.random()*8)+1;
while(usedCount[rand−1]>1)
{
//find a better random number
rand = (int)(Math.random()*8)+1;
}
//don’t use an image more than twice!
usedCount[rand−1]+ +;
//set the image
buttons[i][j].setIcon(new ImageIcon(“img”+rand+“.png”));
//keep track of the images
locations[i][j] = rand;
cont.validate();
}
}
//pause
Thread.sleep(3000);
//two for loops
for(int i = 0; i < buttons[0].length; i++)
{
for(int j = 0; j < buttons.length; j++)
{
//change the icons back
buttons[i][j].setIcon(blank);
cont.validate();
}
}
}
catch(Exception e){ }
}
public void actionPerformed(ActionEvent e)
{
//if it is the first guess
if(!guessedOne)
{
for(int i = 0; i < buttons[0].length; i++)
{
for(int j = 0; j < buttons.length; j++)
{
if(e.getSource()= =buttons[i][j])
{
//display the image
int picNum = locations[i][j];
buttons[i][j].setIcon(new ImageIcon(“img”+picNum+“.png”)); firstGuess = picNum;
firstGuessPos1 = i;
firstGuessPos2 = j;
}
}
}
guessedOne = true;
}
//if it is the second guess
else
{
285

for(int i = 0; i < buttons[0].length; i++)
{
for(int j = 0; j < buttons.length; j++)
{
if(e.getSource()= =buttons[i][j])
{
//display the image
int picNum = locations[i][j];
buttons[i][j].setIcon(new ImageIcon(“img”+picNum+“.png”)); secGuess = picNum;
secGuessPos1 = i;
secGuessPos2 = j;
cont.validate();
}
}
//let the thread check for a win
guessedOne = false;
readyToCheck = true;
}
}
}
public static void main (String[] args)
{
new Memory();
}
}
Project 53: Memory—Photo Finish Figure 53-5 Counter counts down
286

Project 53: Memory—Photo Finish
Figure 53-6
Zero levels completed.
Figure 53-7
Memory failure at Level 4.
287

Figure 53-8
A true Evil Genius!
Figures 53-5 through 53-8 illustrate the
Shuffle the images mid-game.
completed game of Memory.
Program a new set of images for each level.
Replace the images with sounds ... try matching Customizing the game
those!
To really confuse the players, overlay sensory Change the images to random colors.
input. Play loud rock music throughout the test ...
Change the 4×4 grid of 16 images into a super
or the incessant sounds of a baby crying or a dog challenging 10×10 grid of 100 images.
barking.
Randomly add on or subtract time.
Project 53: Memory—Photo Finish
288

Project 54: Ian Says—Color Quad
Project 54: Ian Says—Color Quad
First, create a 400 by 400 pixel JFrame.
Then, program a paint method. In the paint
Ian Says
method, draw four filled squares, each 200 by
200 pixels, as shown in Figure 54-1. Paint one Don’t blink as the computer flashes a series of square red; another, blue; another, green; the colors that the player must remember and repeat.
last, yellow. Next, pause the game for one second Ian Says becomes more difficult at each level as so the player will have time to prepare for the the sequence grows longer and longer. How good round.
is your recall? Make one small mistake and you start all over again.
Now, create a method that will randomly
choose one of the four colors. The method should return a char that represents the randomly chosen color.
Project
Using the paint method, call the method you
Build the game board and program the color
just created. Change the chosen square to a
sequencing of Level 1.
brighter shade of the same color. Then, add
text that displays the name of the color (see
Making the game
Figure 54-2).
Pause the game for a quarter of a second. Next, The basic game board of Ian Says consists
reset the board to the standard shade of the color of four squares of different colors, each
by calling a new method you must create to
200 by 200 pixels (see Figure 54-1).
re-initialize the board.
Figure 54-1
Sample square.
Figure 54-2
“Green” displayed on the bright green
square.
289
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
public class IanSays extends JFrame
{
public IanSays()
{
super(“Ian Says”);
setSize(400,400);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); setVisible(true);
}
public void paint(Graphics g)
{
super.paint(g);
//red square
g.setColor(new Color(200,50,50));
g.fillRect(0,0,200,200);
//blue square
g.setColor(new Color(50,50,200));
g.fillRect(200,0,200,200);
//green square
g.setColor(new Color(50,200,50));
g.fillRect(0,200,200,200);
//yellow square
g.setColor(new Color(200,200,0));
g.fillRect(200,200,200,200);
try
{
Thread.sleep(1000);
}
catch(Exception e){}
String newColor = newColor();
//draw the appropriate new color
if(newColor.equals(“r”))
{
g.setColor(new Color(255,0,0));
g.fillRect(0,0,200,200);
g.setColor(Color.black);
g.setFont(new Font(“arial”, Font.BOLD, 40));
g.drawString(“Red”,50,80);
}
if(newColor.equals(“b”))
{
g.setColor(new Color(0,0,250));
g.fillRect(200,0,200,200);
g.setColor(Color.black);
g.setFont(new Font(“arial”, Font.BOLD, 40));
g.drawString(“Blue”,250,80);
}
if(newColor.equals(“g”))
{
g.setColor(new Color(0,255,0));
g.fillRect(0,200,200,200);
g.setColor(Color.black);
Project 54: Ian Says—Color Quad
g.setFont(new Font(“arial”, Font.BOLD, 40));
290
Project 54: Ian Says—Color Quad
g.drawString(“Green”,50,280);
}
if(newColor.equals(“y”))
{
g.setColor(new Color(255,255,0));
g.fillRect(200,200,200,200);
g.setColor(Color.black);
g.setFont(new Font(“arial”, Font.BOLD, 40));
g.drawString(“Yellow”,250,280);
}
try
{
Thread.sleep(250);
}
catch(Exception e){}
reset(g);
}
//generate a new random number
public String newColor()
{
int rand = (int)(Math.random()*4);
if(rand= =0)
{
return “r”;
}
if(rand= =1)
{
return “b”;
}
if(rand= =2)
{
return “g”;
}
if(rand= =3)
{
return “y”;
}
return “ ”;
}
public void reset(Graphics g)
{
//reset the squares
g.setColor(new Color(200,50,50));
g.fillRect(0,0,200,200);
g.setColor(new Color(50,50,200));
g.fillRect(200,0,200,200);
g.setColor(new Color(50,200,50));
g.fillRect(0,200,200,200);
g.setColor(new Color(200,200,0));
g.fillRect(200,200,200,200);
}
public static void main (String[]args)
{
new IanSays();
}
}
291

Figures 54-3 through 54-5 illustrate the first The first part of the color sequence has been
visual cue of Ian Says.
displayed. In the next project, learn how to test the player’s memory skills.
Figure 54-3
Game board with standard colors.
Project 54: Ian Says—Color Quad Figure 54-4 Brightened green square.
292

Project 55: Ian Says—Brain Drain
Figure 54-5
Game board with standard colors.
Project 55: Ian Says—Brain Drain
Project
square. If the X position is greater than 200 and the Y position is less than 200, the player is The action begins here. Program the computer to clicking the top right square. If the Y position is determine whether or not the player has entered greater than 200 and the X position is less than the correct sequence of colors.
200, the player is clicking the bottom left square.
If both the X an Y positions are greater than 200, the player is clicking the bottom right square.
Making the game
Change a variable called “lastGuess” to the square the player last clicked. In addition, add the clicked In order to let the user repeat the sequence,
color to a String representing the player’s guess.
implement “mouseListener.” Don’t forget to
Call “repaint().”
include all five mandatory methods. In the
mouseClicked method, set a boolean that
You will need to modify the paint method.
represents if the computer is displaying the
Check the boolean that represents if the computer sequence to false. Next, increment by one a
is displaying a sequence. If it is not, brighten the variable that represents the number of guesses last colored square that the player clicked by using the player has taken.
the “lastGuess” variable.
You must determine which square the user is
Now, back in the mouseClicked method, check
clicking. If the X and Y positions of the click are if the player’s sequence matches that of the
less than 200, the user is clicking the top left computer’s. To do this, use the “substring” method 293
to extract the part of the computer’s sequence that and the number of player guesses are the same as the player has guessed. Compare the two Strings.
the number of colors in the sequence, use a
If they are different, the user has guessed
JOptionPane message to tell the user he/she has incorrectly. Use a JOptionPane message to tell the correctly completed the sequence.
player he/she has lost. If the Strings are the same import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
public class IanSays extends JFrame implements MouseListener
{
Container cont;
String code = “”;
String guess = “”;
int guesses = 0;
String lastLetter;
boolean normal = true;
public IanSays()
{
super(“Ian Says”);
setSize(400,400);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); setVisible(true);
addMouseListener(this);
}
public void paint(Graphics g)
{
super.paint(g);
if(!normal)
{
reset(g);
String newColor = lastLetter;
//light up the correct square when clicked
if(newColor.equals(“r”))
{
g.setColor(new Color(255,0,0));
g.fillRect(0,0,200,200);
}
if(newColor.equals(“b”))
{
g.setColor(new Color(0,0,250));
g.fillRect(200,0,200,200);
}
if(newColor.equals(“g”))
{
g.setColor(new Color(0,255,0));
g.fillRect(0,200,200,200);
}
if(newColor.equals(“y”))
{
g.setColor(new Color(255,255,0));
g.fillRect(200,200,200,200);
}
try
Project 55: Ian Says—Brain Drain
{
294
Project 55: Ian Says—Brain Drain
Thread.sleep(250);
}
catch(Exception ex){}
reset(g);
}
else
{
//make the squares
g.setColor(new Color(200,50,50));
g.fillRect(0,0,200,200);
g.setColor(new Color(50,50,200));
g.fillRect(200,0,200,200);
g.setColor(new Color(50,200,50));
g.fillRect(0,200,200,200);
g.setColor(new Color(200,200,0));
g.fillRect(200,200,200,200);
try
{
Thread.sleep(1000);
}
catch(Exception e){ }
//iterate through the code
for(int i = 0; i <code.length(); i+ +)
{
try
{
Thread.sleep(250);
}
catch(Exception e){ }
//light up the next square
char letter = code.toCharArray()[i];
if(letter= =‘r’)
{
g.setColor(new Color(255,0,0));
g.fillRect(0,0,200,200);
g.setColor(Color.black);
g.setFont(new Font(“arial”, Font.BOLD, 40));
g.drawString(“Red”,50,80);
}
if(letter= =‘b’)
{
g.setColor(new Color(0,0,250));
g.fillRect(200,0,200,200);
g.setColor(Color.black);
g.setFont(new Font(“arial”, Font.BOLD, 40));
g.drawString(“Blue”,250,80);
}
if(letter= =‘g’)
{
g.setColor(new Color(0,255,0));
g.fillRect(0,200,200,200);
g.setColor(Color.black);
g.setFont(new Font(“arial”, Font.BOLD, 40));
g.drawString(“Green”,50,280);
}
if(letter= =‘y’)
{
g.setColor(new Color(255,255,0));
g.fillRect(200,200,200,200);
g.setColor(Color.black);
295
g.setFont(new Font(“arial”, Font.BOLD, 40));
g.drawString(“Yellow”,250,280);
}
try
{
Thread.sleep(250);
}
catch(Exception e){}
reset(g);
}
try
{
Thread.sleep(250);
}
catch(Exception e){ }
String newColor = newColor();
//display the appropriate color
if(newColor.equals(“r”))
{
g.setColor(new Color(255,0,0));
g.fillRect(0,0,200,200);
g.setColor(Color.black);
g.setFont(new Font(“arial”, Font.BOLD, 40));
g.drawString(“Red”,50,80);
}
if(newColor.equals(“b”))
{
g.setColor(new Color(0,0,250));
g.fillRect(200,0,200,200);
g.setColor(Color.black);
g.setFont(new Font(“arial”, Font.BOLD, 40));
g.drawString(“Blue”,250,80);
}
if(newColor.equals(“g”))
{
g.setColor(new Color(0,255,0));
g.fillRect(0,200,200,200);
g.setColor(Color.black);
g.setFont(new Font(“arial”, Font.BOLD, 40));
g.drawString(“Green”,50,280);
}
if(newColor.equals(“y”))
{
g.setColor(new Color(255,255,0));
g.fillRect(200,200,200,200);
g.setColor(Color.black);
g.setFont(new Font(“arial”, Font.BOLD, 40));
g.drawString(“Yellow”,250,280);
}
try
{
Thread.sleep(250);
}
catch(Exception e){}
reset(g);
}
}
Project 55: Ian Says—Brain Drain
public String newColor()
296
Project 55: Ian Says—Brain Drain
{
//generate the random color
int rand = (int)(Math.random()*4);
if(rand= =0)
{
code+=“r”;
return “r”;
}
if(rand= =1)
{
code+=“b”;
return “b”;
}
if(rand= =2)
{
code+=“g”;
return “g”;
}
if(rand= =3)
{
code+=“y”;
return “y”;
}
return “ ”;
}
public void reset(Graphics g)
{
//reset the red square
g.setColor(new Color(200,50,50));
g.fillRect(0,0,200,200);
//reset the blue square
g.setColor(new Color(50,50,200));
g.fillRect(200,0,200,200);
//reset the green square
g.setColor(new Color(50,200,50));
g.fillRect(0,200,200,200);
//reset the yellow square
g.setColor(new Color(200,200,0));
g.fillRect(200,200,200,200);
}
public void mouseExited(MouseEvent e){ }
public void mouseEntered(MouseEvent e){ }
public void mouseReleased(MouseEvent e){ }
public void mousePressed(MouseEvent e){ }
public void mouseClicked(MouseEvent e)
{
normal = false;
guesses+ +;
//find out which square the player clicked
if(e.getX()<200 && e.getY()<200)
{
lastLetter = “r”;
guess+=“r”;
}
if(e.getX()>200 && e.getY()<200)
{
lastLetter = “b”;
guess+=“b”;
}
if(e.getX()<200 && e.getY()>200) 297

{
lastLetter = “g”;
guess+=“g”;
}
if(e.getX()>200 && e.getY()>200)
{
lastLetter = “y”;
guess+=”y”;
}
repaint();
String codeSeg = code.substring(0,guesses);
if(!codeSeg.equals(guess))
{
//game over!
JOptionPane.showMessageDialog(null,“GAME OVER!!!”);
}
else
{
//the player can proceed
if(guesses= =code.length())
{
JOptionPane.showMessageDialog(null,“Correct!!!”);
}
}
}
public static void main (String[]args)
{
new IanSays();
}
}
Figure 55-1
Computer’s sequence.
Project 55: Ian Says—Brain Drain
298

Project 55: Ian Says—Brain Drain
Figures 55-1 through 55-3 show the game’s
Simple ... right? Be prepared—things are
cycle.
going to get very complicated very quickly.
Figure 55-2
Correctly repeated.
Figure 55-3
Incorrectly repeated — L-O-S-E-R!!!
299

Project 56: Ian Says—More Rounds, More Frustration Project
Build an infinite number of levels containing an ever-increasing sequence of colors to memorize.
Making the game
In the mouseClicked method, remove the code that creates the JOptionPane that congratulates the player.
Replace it with code that resets the player’s guess and the length of the sequence. In addition, set the boolean that represents if the computer is creating a sequence to true. Next, call the “repaint” method.
Figure 56-1
Circle indicating level number.
In the paint method, program a for loop that
iterates through each letter of the code. On each iteration, use the following code to determine which color to use.
Now that there are multiple levels of play, you
<code>.toCharArray()[<element number
must indicate to the player what level he/she is on.
of the code>];
To do this, write a method that draws a white
The above method returns a char, which can then circle surrounded by black text, like the one shown be checked in an if-statement to determine if it in Figure 56-1.
contains an “r” (red), “b” (blue), “g” (green), or In the paint method, call the method that
“y” (yellow). Brighten the appropriate square and displays the circle and level number before the display the correct text to indicate its color.
Thread.sleep methods.
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
public class IanSays extends JFrame implements MouseListener
{
Container cont;
String code = “”;
String guess = “”;
int guesses = 0;
int levels = 0;
String lastLetter;
boolean normal = true;
public IanSays()
{
super(“Ian Says”);
setSize(400,400);
Project 56: Ian Says—More Rounds, More Frustration setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); setVisible(true);
300
Project 56: Ian Says—More Rounds, More Frustration Container cont = getContentPane();
cont.setLayout(null);
addMouseListener(this);
}
public void paint(Graphics g)
{
super.paint(g);
if(!normal)
{
reset(g);
String newColor = lastLetter;
//light up the correct square when clicked
if(newColor.equals(“r”))
{
g.setColor(new Color(255,0,0));
g.fillRect(0,0,200,200);
}
if(newColor.equals(“b”))
{
g.setColor(new Color(0,0,250));
g.fillRect(200,0,200,200);
}
if(newColor.equals(“g”))
{
g.setColor(new Color(0,255,0));
g.fillRect(0,200,200,200);
}
if(newColor.equals(“y”))
{
g.setColor(new Color(255,255,0));
g.fillRect(200,200,200,200);
}
drawLevel(g);
try
{
Thread.sleep(250);
}
catch(Exception ex){}
reset(g);
}
else
{
levels+ +;
//make the squares
g.setColor(new Color(200,50,50));
g.fillRect(0,0,200,200);
g.setColor(new Color(50,50,200));
g.fillRect(200,0,200,200);
g.setColor(new Color(50,200,50));
g.fillRect(0,200,200,200);
g.setColor(new Color(200,200,0));
g.fillRect(200,200,200,200);
drawLevel(g);
try
{
Thread.sleep(1000);
}
catch(Exception e){ }
301
//iterate through the code
for(int i = 0; i <code.length(); i+ +)
{
try
{
Thread.sleep(250);
}
catch(Exception e){}
//light up the next square
char letter = code.toCharArray()[i];
if(letter= =‘r’)
{
g.setColor(new Color(255,0,0));
g.fillRect(0,0,200,200);
g.setColor(Color.black);
g.setFont(new Font(“arial”, Font.BOLD, 40));
g.drawString(“Red”,50,80);
}
if(letter= =‘b’)
{
g.setColor(new Color(0,0,250));
g.fillRect(200,0,200,200);
g.setColor(Color.black);
g.setFont(new Font(“arial”, Font.BOLD, 40));
g.drawString(“Blue”,250,80);
}
if(letter= =‘g’)
{
g.setColor(new Color(0,255,0));
g.fillRect(0,200,200,200);
g.setColor(Color.black);
g.setFont(new Font(“arial”, Font.BOLD, 40));
g.drawString(“Green”,50,280);
}
if(letter= =‘y’)
{
g.setColor(new Color(255,255,0));
g.fillRect(200,200,200,200);
g.setColor(Color.black);
g.setFont(new Font(“arial”, Font.BOLD, 40));
g.drawString(“Yellow”,250,280);
}
drawLevel(g);
try
{
Thread.sleep(250);
}
catch(Exception e){}
reset(g);
}
try
{
Thread.sleep(250);
}
catch(Exception e){}
String newColor = newColor();
//display the appropriate color
Project 56: Ian Says—More Rounds, More Frustration if(newColor.equals(“r”))
302
Project 56: Ian Says—More Rounds, More Frustration
{
g.setColor(new Color(255,0,0));
g.fillRect(0,0,200,200);
g.setColor(Color.black);
g.setFont(new Font(“arial”, Font.BOLD, 40));
g.drawString(“Red”,50,80);
}
if(newColor.equals(“b”))
{
g.setColor(new Color(0,0,250));
g.fillRect(200,0,200,200);
g.setColor(Color.black);
g.setFont(new Font(“arial”, Font.BOLD, 40));
g.drawString(“Blue”,250,80);
}
if(newColor.equals(“g”))
{
g.setColor(new Color(0,255,0));
g.fillRect(0,200,200,200);
g.setColor(Color.black);
g.setFont(new Font(“arial”, Font.BOLD, 40));
g.drawString(“Green”,50,280);
}
if(newColor.equals(“y”))
{
g.setColor(new Color(255,255,0));
g.fillRect(200,200,200,200);
g.setColor(Color.black);
g.setFont(new Font(“arial”, Font.BOLD, 40));
g.drawString(“Yellow”,250,280);
}
drawLevel(g);
try
{
Thread.sleep(250);
}
catch(Exception e){}
reset(g);
}
}
public void drawLevel(Graphics g)
{
//draw the oval and text that displays the level g.setColor(Color.white);
g.fillOval(160,160,80,80);
g.setColor(Color.black);
g.setFont(new Font(“arial”, Font.BOLD, 15));
g.drawString(“Level ”+levels,175,205);
}
public String newColor()
{
//generate the random color
int rand = (int)(Math.random()*4);
if(rand= =0)
{
code+=“r”;
return “r”;
}
if(rand= =1)
303
{
code+=“b”;
return “b”;
}
if(rand= =2)
{
code+=“g”;
return “g”;
}
if(rand= =3)
{
code+=“y”;
return “y”;
}
return “ ”;
}
public void reset(Graphics g)
{
//reset the red square
g.setColor(new Color(200,50,50));
g.fillRect(0,0,200,200);
//reset the blue square
g.setColor(new Color(50,50,200));
g.fillRect(200,0,200,200);
//reset the green square
g.setColor(new Color(50,200,50));
g.fillRect(0,200,200,200);
//reset the yellow square
g.setColor(new Color(200,200,0));
g.fillRect(200,200,200,200);
drawLevel(g);
}
public void mouseExited(MouseEvent e){}
public void mouseEntered(MouseEvent e){}
public void mouseReleased(MouseEvent e){}
public void mousePressed(MouseEvent e){}
public void mouseClicked(MouseEvent e)
{
normal = false;
guesses+ +;
//find out which square the player clicked
if(e.getX()<200 && e.getY()<200)
{
lastLetter = “r”;
guess + = “r”;
}
if(e.getX()>200 && e.getY()<200)
{
lastLetter = “b”;
guess+=“b”;
}
if(e.getX()<200 && e.getY()>200)
{
lastLetter = “g”;
guess+=“g”;
}
if(e.getX()>200 && e.getY()>200)
{
lastLetter = “y”;
Project 56: Ian Says—More Rounds, More Frustration 304

Project 56: Ian Says—More Rounds, More Frustration guess+=“y”;
}
repaint();
String codeSeg = code.substring(0,guesses);
if(!codeSeg.equals(guess))
{
JOptionPane.showMessageDialog(null,”Game Over”);
}
else
{
//the player can proceed
if(guesses= =code.length())
{
guess = “”;
guesses = 0;
normal = true;
//next level!
repaint();
}
}
}
public static void main (String[]args)
{
new IanSays();
}
}
Figures 56-2 through 56-4 demonstrates sample
Add refinement to Ian Says by designing a
game levels.
background image with a start button that provides players time to prepare for their mental workout.
Figure 56-2
Game begins.
305

Figure 56-3
Level 6.
Project 56: Ian Says—More Rounds, More Frustration Figure 56-4 Game over.
306

Project 57: Ian Says—Play Accessories
Project 57: Ian Says—Play Accessories
Project
Construct a “start” image that alerts the player that the game is set to begin. Also, design images and messages to appear as the player completes levels.
Making the game
In Microsoft Paint, create a 400 by 400 pixel
starting image, like the one shown in Figure 57-1.
In the constructor, add the image to the JFrame.
Add a JButton on top of the image. Don’t forget to add an ActionListener. Next, create a boolean that Figure 57-1
Starting image.
represents if the game should start and set it to false. In the JButton’s actionPerformed method, set the boolean to true and move the button offscreen.
For example, if the player fails to remember any In the paint method, check if the boolean is true.
colors of the sequence (), display the text in If so, begin the game.
Figure 57-2. If the player remembers a 1 to 5 color At the end of the game, replace the JOptionPane sequence, display the text in Figure 57-3. If the with text. Display different phrases corresponding user remembers a sequence greater than 5, display to the length of the sequence the player mastered.
the text in Figure 57-4.
Figure 57-2
No sequential memory.
307

Figure 57-3
Good start ... but keep practicing.
Figure 57-4
Solid memory ... the basis of a true Evil Genius.
Project 57: Ian Says—Play Accessories
308
Project 57: Ian Says—Play Accessories
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
public class IanSays extends JFrame implements MouseListener, ActionListener
{
Container cont;
String code = “”;
String guess = “”;
int guesses = 0;
int levels = 0;
String lastLetter;
boolean over = false;
boolean normal = true;
boolean begin = false;
JButton start = new JButton(“START”);
public IanSays()
{
super(“Ian Says”);
setSize(400,400);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); setVisible(true);
Container cont = getContentPane();
cont.setLayout(null);
cont.add(start);
start.addActionListener(this);
start.setFont(new Font(“arial”,Font.BOLD,20)); start.setBounds(145,250,100,50);
JLabel title = new JLabel(new ImageIcon(“title.png”)); cont.add(title);
title.setBounds(0,0,400,400);
addMouseListener(this);
}
public void paint(Graphics g)
{
super.paint(g);
if(!begin)
return;
if(over)
{
//GAME OVER!
reset(g);
g.setColor(Color.black);
g.setFont(new Font(“Arial”, Font.BOLD,50));
g.drawString(“Game Over!”,60,150);
g.setFont(new Font(“Arial”, Font.BOLD,20));
if((levels−1) = = 0)
{
g.drawString(“You didn’t memorize anything!!!”,50,285);
}
else if((levels−1)<=5)
{
g.drawString(“You memorized a random sequence of ”,15,275); g.drawString(“only “ + (levels −1)+” color (s).:(”,130,300);
}
else
{
g.drawString(“Congrats! You memorized a random”,15,275); g.drawString(“sequence of “+(levels−1)+” colors.:)”,100,300); 309
}
}
else
{
if(!normal)
{
reset(g);
String newColor = lastLetter;
//light up the correct square when clicked
if(newColor.equals(“r”))
{
g.setColor(new Color(255,0,0));
g.fillRect(0,0,200,200);
}
if(newColor.equals(“b”))
{
g.setColor(new Color(0,0,250));
g.fillRect(200,0,200,200);
}
if(newColor.equals(“g”))
{
g.setColor(new Color(0,255,0));
g.fillRect(0,200,200,200);
}
if(newColor.equals(“y”))
{
g.setColor(new Color(255,255,0));
g.fillRect(200,200,200,200);
}
drawLevel(g);
try
{
Thread.sleep(250);
}
catch(Exception ex){}
reset(g);
}
else
{
levels+ +;
//make the squares
g.setColor(new Color(200,50,50));
g.fillRect(0,0,200,200);
g.setColor(new Color(50,50,200));
g.fillRect(200,0,200,200);
g.setColor(new Color(50,200,50));
g.fillRect(0,200,200,200);
g.setColor(new Color(200,200,0));
g.fillRect(200,200,200,200);
drawLevel(g);
try
{
Thread.sleep(1000);
}
catch(Exception e){}
//iterate through the code
for(int i = 0; i <code.length(); i+ +)
{
Project 57: Ian Says—Play Accessories
310
Project 57: Ian Says—Play Accessories
try
{
Thread.sleep(250);
}
catch(Exception e){ }
//light up the next square
char letter = code.toCharArray()[i];
if(letter= = ‘r’)
{
g.setColor(new Color(255,0,0));
g.fillRect(0,0,200,200);
g.setColor(Color.black);
g.setFont(new Font(“arial”, Font.BOLD, 40));
g.drawString(“Red”,50,80);
}
if(letter= =‘b’)
{
g.setColor(new Color(0,0,250));
g.fillRect(200,0,200,200);
g.setColor(Color.black);
g.setFont(new Font(“arial”, Font.BOLD, 40));
g.drawString(“Blue”,250,80);
}
if(letter= =‘g’)
{
g.setColor(new Color(0,255,0));
g.fillRect(0,200,200,200);
g.setColor(Color.black);
g.setFont(new Font(“arial”, Font.BOLD, 40));
g.drawString(“Green”,50,280);
}
if(letter= =‘y’)
{
g.setColor(new Color(255,255,0));
g.fillRect(200,200,200,200);
g.setColor(Color.black);
g.setFont(new Font(“arial”, Font.BOLD, 40));
g.drawString(“Yellow”,250,280);
}
drawLevel(g);
try
{
Thread.sleep(250);
}
catch(Exception e){ }
reset(g);
}
try
{
Thread.sleep(250);
}
catch(Exception e){ }
String newColor = newColor();
//display the appropriate color
if(newColor.equals(“r”))
{
g.setColor(new Color(255,0,0));
g.fillRect(0,0,200,200);
311
g.setColor(Color.black);
g.setFont(new Font(“arial”, Font.BOLD, 40));
g.drawString(“Red”,50,80);
}
if(newColor.equals(“b”))
{
g.setColor(new Color(0,0,250));
g.fillRect(200,0,200,200);
g.setColor(Color.black);
g.setFont(new Font(“arial”, Font.BOLD, 40));
g.drawString(“Blue”,250,80);
}
if(newColor.equals(“g”))
{
g.setColor(new Color(0,255,0));
g.fillRect(0,200,200,200);
g.setColor(Color.black);
g.setFont(new Font(“arial”, Font.BOLD, 40));
g.drawString(“Green”,50,280);
}
if(newColor.equals(“y”))
{
g.setColor(new Color(255,255,0));
g.fillRect(200,200,200,200);
g.setColor(Color.black);
g.setFont(new Font(“arial”, Font.BOLD, 40));
g.drawString(“Yellow”,250,280);
}
drawLevel(g);
try
{
Thread.sleep(250);
}
catch(Exception e){}
reset(g);
}
}
}
public void drawLevel(Graphics g)
{
//draw the oval and text that displays the level g.setColor(Color.white);
g.fillOval(160,160,80,80);
g.setColor(Color.black);
g.setFont(new Font(“arial”, Font.BOLD, 15));
g.drawString(“Level ”+levels,175,205);
}
public String newColor()
{
//generate the random color
int rand = (int)(Math.random()*4);
if(rand= =0)
{
code+=“r”;
return “r”;
}
if(rand= =1)
{
Project 57: Ian Says—Play Accessories
312
Project 57: Ian Says—Play Accessories
code+= “b”;
return “b”;
}
if(rand= =2)
{
code+=“g”;
return “g”;
}
if(rand= =3)
{
code+=“y”;
return “y”;
}
return “ ”;
}
public void reset(Graphics g)
{
//reset the red square
g.setColor(new Color(200,50,50));
g.fillRect(0,0,200,200);
//reset the blue square
g.setColor(new Color(50,50,200));
g.fillRect(200,0,200,200);
//reset the green square
g.setColor(new Color(50,200,50));
g.fillRect(0,200,200,200);
//reset the yellow square
g.setColor(new Color(200,200,0));
g.fillRect(200,200,200,200);
drawLevel(g);
}
public void actionPerformed(ActionEvent e)
{
//if start was pressed, start the game
start.setBounds(500,500,50,50);
begin = true;
repaint();
}
public void mouseExited(MouseEvent e){}
public void mouseEntered(MouseEvent e){}
public void mouseReleased(MouseEvent e){}
public void mousePressed(MouseEvent e){}
public void mouseClicked(MouseEvent e)
{
normal = false;
guesses+ +;
//find out which square the player clicked
if(e.getX()<200 && e.getY()<200)
{
lastLetter = “r”;
guess+= “r”;
}
if(e.getX()>200 && e.getY()<200)
{
lastLetter = “b”;
guess+=“b”;
}
if(e.getX()<200 && e.getY()>200) 313

{
lastLetter = “g”;
guess+=”g”;
}
if(e.getX()>200 && e.getY()>200)
{
lastLetter = “y”;
guess+=“y”;
}
repaint();
String codeSeg = code.substring(0,guesses);
if(!codeSeg.equals(guess))
{
//game over!
over = true;
repaint();
}
else
{
//the player can proceed
if(guesses= =code.length())
{
guess = “”;
guesses = 0;
normal = true;
//next level!
repaint();
}
}
}
public static void main (String[]args)
{
new IanSays();
}
}
Figures 57-5 and 57-6 shows the end of a
challenging round of Ian Says.
Customizing the game
Use auditory cues instead of colors as memory
targets.
Alter the design of the game board from
4 squares to piano keys.
Add additional squares of different colors to the grid after each successful round.
Project 57: Ian Says—Play Accessories
Give players a time limit for each round.
Figure 57-5
The game begins.
314

Project 57: Ian Says—Play Accessories
Figure 57-6
Devastating loss at level 4. Darn it!
Construct a finite number of levels and race
Congratulations! You have mastered the art of
against the clock to complete them.
programming video games.
In a test of eye-hand coordination, require right-
You are clever, creative, and are a computer
handed players to use their left hand and left-
wizard!
handed players to use their right hand to respond.
You are a true EVIL GENIUS!!!
Force players to delay their responses by
“freezing” the board for several seconds.
315
This page intentionally left blank
Index
Page references followed by f indicate an illustrative figure A
D
ActionListener 98–99
declarations 1
actionPerformed method 107
double 4
aliens, creating. see Space Destroyers, lasers and retaliation arguments 29
ArrayLists x, 20, 25
F
use of 21f
file IO (input/output) x, 14–15, 25
arrays viii, 17, 25
accessing files 14–15
two dimensional 221
creating files 14
use of 19f
see also input
Artificial Intelligence (AI). see Snake pit, snake bite; FileReader 15
Tic-Tac-Toe, knock out
flow control x, 1–2, 10, 25
see also loops
B
FlowLayout 95
font, changing the JLabel 151
board games ix, 95–136
Bomb Diffuser 183–202
bomb squad noob 183–186
G
illustrative figures 184f, 185f, 186f
Graphical User Interface (GUI) 27
expert diffuser 186–191
Guess the Password 3–7
coordinates displayed 189f
game play 6–7f
diffusing the bomb 189–191f
input dialog box 5f
kaboom 191–196
explosions 191f, 195f, 196f
steps of a bomb exploding 195–196f
I
rising through the ranks 197–202
Ian Says 289–315
congratulate the player 197f
brain drain 293–299
stress of bomb diffusion 201–202f
game’s cycle 298–299f
boolean 4
color quad 289–293
brain busters ix, 265–315
displaying name of color 292f
BufferedReader 15
first visual cue 292–293f
sample square 293f
C
customizing 314
casting 5
more rounds, more frustration 300–320
character 4
level number in circle 300f
classes 1–2
sample game levels 305–306f
collision detection 37–38
play accessories 307–315
example 37f
displaying a challenging round 314f, 315f
with components 141f
displaying different phrases 307f, 308f, 314f
color 28, 29f
starting image 307f
component color 137, 138f
if-statements x, 4–5, 25
Ian Says 289–315
images, creating 45–46
see also Microsoft paint
information, displaying. see Space Destroyers, comments x, 1, 25
life and death
components 95
inner classes. see threads
Crack the Code 14–17
input 5
file 14f
see also file IO
game play 16–17f
integer (int) 3, 29
317
J
N
Java API 56
NetBeans 28, 56
Java Man 245–277
colors 29f
C++ attacks 251–257
NullLayout 111
Java Man’s quest for survival 256–257f
Number Cruncher 7–9
customizing 261–263
illustrative figures 9f
Java Man lives 247–251
Number Cruncher Extreme 10–13
Java Man’s mobility 250–251f
game play 13f
starting position 247
Number Guesser 22–24
Java Man’s universe 245–247
game play 23–24f
game board 247f
obituaries 257–263
Java Man versus C++ 262–263f
O
Java Jumpstart 1–25
objects. see ArrayLists
quick review 25
Oiram 221–247
JButtons 95–96
bad guys 230–236
button with image 96f
enemy action 235–236f
simple button 96f
Oiram’s enemy 230f
JFrames 27–28
complicated world 237–244
color 28, 29f, 138f
life and death of Oiram 243–244f
rectangle 28, 29f
customizing 243–244
simple JFrame 28f
go, Oiram, go 224–229
JLabels 96–98
Oiram climbing 225f
illustrative figure 96f
Oiram in action 229f
JLabel font 137, 151
Oiram’s starting location 224f
JOptionPane x
platform 221–224
JRE (Java Runtime Environment) 10
illustrative figures of platform 223f
two types of arrays 223f
opponent, creating an. see Snake Pit, snake bite K
KeyListener 38
P
pausing x, 7, 25
L
photographs, use of. see Memory, photo finish loops 10
premade classes 56–57
“break” 10–11
R
M
racing games ix, 27–93
Memory 265–288
Radical Racing 27–55
beat the clock 274–288
cars 32–37
JLabel display of time remaining 274f
game play 36–37f
rush to beat the clock 279f
collision 37–45
grid design 265–269
illustrative figures 37f, 44f, 45f
initial memory game board 267–268f
making the game 38–45
memory image 265f
customizing 45–55
match time 269–274
images 45–46f
play sequence display 273–274f
making the game 46–54
photo finish 280–288
new graphics 54–55f
displaying levels of play 281f
suggestions 54
illustrative figures of completed game 286–288f track 27–32
resizing photos 280f
completed track 32f
methods 28–30
drawing a virtual racetrack 30–32
Microsoft paint, use of 183, 186, 215, 247, 257, illustrative figures of Jframes 25f, 28f, 29f
280, 307
random numbers x, 7, 25
MouseListener 55
see also Number Guesser
MouseMotionListener 93, 157–158
rectangle 28, 29f
moving components 140–141
Repeater, The 1–3
Index
318
Index
output of game 2–3f
print to the screen 2f
T
retro games ix, 221–263
threads 32–33
RPG (role playing game) 5
Tic-Tac-Toe Boxing 111–136
championship 127–136
S
GUI 136f
outcome 128f
Screen Skier 55–93
customizing 135
bulldozer 75–84
fight 115–119
add or delete track 82–84f
centered title and buttons 116f
ConfirmDialog box 75f
loop 116f
making the game 75–84
new title image and checks for knockouts 119f
competition 84–93
knock out 120–127
counter 84f
defensive play 120, 120f
game play 92–93f
offensive play 120, 120f
making the game 84–93
new AI 126–127f
customizing 93
ring 111–115
expert slope 66–74
game play 114–115f
background 67f
making the game 111–115
game play 72–74f
time-trial game. see Screen Skier, competition making the game 66–74
Trapper 202–219
practice run 60–66
customizing 219
making the game 60–66
men on the move 202–206
starting position 60f
initial movement of characters 205–206f
steps of drawing a track and positioning skier 64–66f setting the trap 206–210
slope 55–59
trapping trails 209–210f
line drawing capabilities 58–59f
showdown 215–219
making the game 57–59
ultimate game play 219f
shoot ‘em-up games ix, 137–182
trapped 210–214
Snake Pit 137–157
strategy of the trails 214f
arena 137–140
background color 138f
snake images 137–138, 138f
V
snake pit image 139f
variables x, 25
customizing 155
creation of 3–4
King Cobra 151–157
testing 4–5
snake fight 156–157f
Virtual Game Library 17–19
snake bait 140–145
arrays, use of 19f
collision detection 141f
Virtual Game Library Pro Edition 20–22
primary actions in snake pit 144–145f
use of ArrayLists 21–22f
snake bite 146–150
display the battle 150f
W
sound, adding 46, 106–107, 127–128, 288
Space Destroyers 157–182
weapons, creating. see Space Destroyers, lasers landscape 157–160
Whack-an Evil Genius 95–110
making the game 158–160
customizing 110
spaceship and its initial movement 158f, 159f
getting smarter 102–106
lasers 160–165
game over 103f
creating aliens 160f
game play 105–106f
fighting aliens 163f, 164f, 165f
lab 95–98
life and death 174–182
game so far 98f
customizing 179
illustrative figures of JButton 96f
game play 180–182f
illustrative figure of JLabel 96f
retaliation 165–173
making the game 97–98
battle 171–173f
quick! get ‘em 98–102
statements x, 1, 25
game play 101–102f
if-statements x, 4–5, 25
making the game 99–102
strategy games ix, 183–220
showdown 106–110
string 4
addictive game play 110f
title image 107f
319
