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Introduction:

In space, the effective currency governing how far or fast a spacecraft can go is called delta-v (Av),
or change in velocity. In effect the total delta-v of a rocket is the measure of how much its speed
would increase by expelling its entire mass of fuel through an engine. Of course, external forces
such as gravity and atmospheric drag will cause the dissipation of kinetic energy from the rocket, so
the actual delta-v required to achieve orbit from the surface of a body is always larger than the
orbital velocity at the desired altitude.

Because of the first (energy can be neither created nor destroyed) and second (there is no process
which can completely convert energy from one form to another without dissipation losses) laws of
thermodynamics, delta-v requires the expulsion of fuel through a physical engine. A physical engine
has an intrinsic property called specific impulse (Isp) that is the measure of how much thrust can
be generated per unit weight of fuel burned per unit time. Isp itself has units of time, but it is
incorrect to think of it as a measure of time. However, when multiplied by an acceleration (typically
the acceleration due to gravity at the surface of the Earth, or 9.8 meters per second per second), one
gets a value commonly referred to as exhaust velocity (ve), the effective velocity of the exhaust
gases that pass through the nozzle of the physical engine.

The Tsiolkovsky Rocket Equation (TRE) uses the exhaust velocity of a physical engine to calculate
the amount of delta-v attainable by a rocket during a maneuver (or series of maneuvers) given the
mass of the rocket both before (mg) and afterwards (ms):

(TRE) Av = v,In (ﬂ)
mg

TRE will become important later when discussing mass ratios. For now, some terms must be

defined before we can comprehensively discuss the titular Fuel Tanker Equations.

Definitions:

o Fuel Tanker - A fuel tanker in this context is any spacecraft which is capable of making a
round trip from a refueling point to a cargo loading point, where it will take on a certain
pre-measured quantity of fuel and bring it back to the refueling point. A single stage and
single engine (or configuration of engines) is used for the entire mission cycle.

o Refueling Point - The refueling point is the point in space at which the fuel tanker offloads
its cargo, and replenishes its own tanks of burnable fuel.

e (Cargo Loading Point - The point at which non-burnable fuel (cargo fuel) is loaded onto the
tanker. No refueling takes place at the cargo loading point.

e Mission Cycle - A mission cycle is a round trip from the refueling point to the cargo loading
point and back again.
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Burnable Fuel - Burnable fuel is the fuel that the tanker is allowed to burn during its
designated mission cycle.

Non-Burnable (Cargo) Fuel - Non-burnable fuel (cargo fuel) is fuel that the spacecraft is
not allowed to burn during its designated mission cycle. A certain amount of cargo fuel is
designated to become burnable fuel at the refueling point.
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Figure 1 - Typical mission cycle for a fuel tanker type spacecraft.

Mission Constraints

There are two primary mission constraints and for a fuel tanker type spacecraft.

1.

It must be able to complete a mission cycle on one engine or set of engines configured in a
single stage. This is the reusability requirement, as a tanker should be useful for multiple
mission cycles without need of replacement.

Furthermore, each leg of the mission cycle must have consistent delta-v requirements - the
amount of burnable fuel allowed is determined by the delta-v requirements for a given trip,
and requiring the fuel tanker to expend any more or less delta-v may disturb the
equilibrium of delivering and reusing cargo fuel for each mission cycle.



(1)

(2)

(3)

Quantitatively, this implies that the specific impulse is constant and the same for both legs
of the mission cycle. If Isp is constant, and the delta-v requirements for each leg is known
then it follows from TRE that R = exp(—Av/v,), where R is the mass ratio my/m, of each

leg of the mission cycle.

Therefore, if my and m; are defined to be the tanker’s mass at the start and end of the first
leg respectively, and m, and ms are the tanker’s mass at the start and end of the second leg
respectively, then the following ratios must be constant.

The tanker should be designed such that it burns through all of the burnable fuel in its
stores before reaching the refueling point. The only fuel that is not burned is the cargo fuel.
Then, after refueling it must be able to offload a predetermined amount of fuel, using the
remainder to refill its own burnable fuel storage tanks.

Taking this requirement into consideration, the amount of burnable fuel can be expressed in
terms of the total amount of cargo fuel to be carried, and the amount of cargo fuel that is to
be offloaded at the refueling point.

Amy +Am, = Mceargo — Moffload

Where Am; and Am, are the respective amounts of fuel burned during the initial and final
legs of the mission cycle.

Mass Targets for Mission Cycle Completion

As mentioned in the introduction, delta-v can only be achieved through reduction in mass. TRE

shows that the primary driver for delta-v is mass difference: a high initial mass and a low final mass
yield a larger delta-v. However, using more efficient engines (i.e. higher Isp) will yield greater delta-
v for a given mass of fuel. It was shown in equations (1) and (2) that the mass ratio of the tanker at
the end of the mission cycle leg to that at the start can be expressed entirely as a function of exhaust
velocity (which is directly proportional to Isp), and the desired amount of delta-v to be achieved for
that leg.

Since the ratios are constant known values, this means that the masses at each point of the mission

cycle must also be constant known values. When engineering the spacecraft, these are known as
mass targets for the mission.



The first mass target is the initial mass of the tanker when unladen with cargo but fully stocked in
burnable fuel. To derive this, we must consider the definition set forth for the mass ratio of the
initial leg

m
Rl E—:>m1 =R1m0
my

Between the point when the spacecraft had mass m; to when it had mass m;, the amount of fuel
burned had a mass of Am,. Therefore m; can be written as

m; =mg—Am; =Rm,
(4) Amy; = (1 —Ry)mg
By applying the same algebra to the second leg, it follows that the second mass change is
(5) Am, = (1 —-Ry)m,
Summing equations (4) and (5) yields the left hand side of equation (3), therefore
(1 =Rpmg + (1 —R)my = Megrgo — Moffioad

Since the second mission constraint requires that no burnable fuel be loaded back onto the
spacecraft at the cargo loading point, the only mass change that occurs between m; and m, is the
onloading of m 44, in cargo fuel (i.e. m; = my + Meqrg0)- Therefore equation (3) becomes

(1 =Rpmgy+ (1 —Rp)my + (1 — R)Meargo = Meargo — Moffioad
(1 =Rymg+ (1 —R)IRmy + (1 = R)Meargo = Meargo — Moffioad
All that remains is to solve algebraically for m,,.
[(1—=Ry)+ (1 —=R)RyImy = [1 = (1 —R)IMeargo — Mosrioad
[1—R; + Ry —RyRyJmy = [1 = 1+ RyIMeargo — Mosrioaa

[1—R4R;Imy = RoMeargo — Moffioaa

™o =1RR, [R2Mcargo = Moffioad]
Note that the quantity R;R, = exp(—Av,/v,) - exp(— Av,/v,) = exp(— (Avy + Av,)/v,) = Ry, can

be interpreted physically as the mass ratio over the course of the entire mission cycle if the fuel
tanker does not take on cargo.

1
(6) my = 1-Ry, [Rzmcargo - moffload]




Because m; = R;my, the second mass target is

R
(7) m; = 1_]:12 [Rchargo - moffload]

Furthermore, since m, = m; + M4y g0, the third mass target can be expressed as

Ry
mp = 1—R [Rzmcargo - moffload] + mcargo
12

Which can be simplified algebraically to

1
my = 75 [R1(ReMeargo = Mofioaa) + (1 = Riz)Meargo]
12

1
mp; = 1—-R [Rlzmcargo — RiMyffioaa + Meargo — Rlzmcargo]
12

1
(8) m; = 1Ry [mcargo - leoffload]

Finally, the mass ratio Rz can be used to find the fourth and final mass target

R
9) m3; = 1_;12 [mcargo - leoffload]

To summarize, the four mass targets for mission cycle completion are:

( _ 1

my=_—75— [Rzmcargo - moffload]
R4

my =_——-— [Rzmcargo - moffload]
1

m; =_———— [mcargo - leoffload]

1—-Rq,

R,

m3z =_——— [mcargo - leoffload]

The Cargo-Offload Relation

Although useful in designing a spacecraft, the mass targets by themselves do not provide concrete
values without knowing what to input for m 4,4, and m,¢f;qq- These are as much properties of the

spacecraft as the mass targets themselves are. The exact values of these depend on the mass of the

rest of the spacecraft, which includes all structure and fuel tanks.

Structure mass is represented solely by the value mg,,+ Which includes the aggregate mass of all
non-fuel carrying components such as command/control units, RCS fuel, engine mass, decouplers,

connections, and landing legs.



The mass of fuel carrying elements can be regarded with two separate values: those for burnable
fuel carrying elements, and those for cargo carrying elements. This mass is a linear function of the
mass of fuel carried. For burnable fuel:

Mpfe = fbft " Mryel
Myre = fpre(Amy + Amy)

(10) Mpfre = fbft(mcargo - moffload)

Where f,5; = My /Mpye is the burnable fuel tank factor, or the total mass of fuel tanks which

must be added to accommodate one unit mass of burnable fuel. There also exists a similarly-defined
cargo fuel tank factor given by f, s = mcrr/Meargo-

(11) Mepe = fcft "Mceargo

The initial fully fueled, cargo unladen mass m can therefore be expressed in terms of the individual
masses for the fundamental components of the spacecraft: Structure, burnable fuel tanks, and cargo
fuel tanks (plus an additional term for the total mass of fuel carried).

(12) My = Mgryce T Mppe + Mepe + Meyer
Substituting equations (10) and (11) into (12) yields
(13) My = Mgtryct + fbft(mcargo - moffload) + fcft ' mcargo + mcargo - moffload

Because equation (13) is equal to (6)

Mstruct + fbft(mca‘rgo - moffload) + fcft ' mcargo + mcargo - moffload = ﬁ [Rzmcargo - moffload]
12

Unifying each term on basis of mass yields

R, 1
Mgeryce + (1 + fbft + fcft)mcargo + (_1 - fbft)moffload = _ Mceargo — — Moffload
1—-Ryy 1—-Ryy

2
Mgtryct + [1 + fbft + fcft - ]mcargo + [ -1- fbft] moffload =0
1 - R12 1 - R12
R2 Riz _
(14’) Miruce + [1 + fbft + fcft - 1—R12] Meargo + [1—R12 - fbft] Myffioad = 0

Equation (14) is called the Cargo-Offload Relation, as the total mass distribution of the tanker must
satisfy it in order to be effective. Generally, either the cargo mass or the offload mass is known. For
example, if a fuel tanker is designed to remove all the fuel from a surface base in one mission cycle
then m 4,4, is known. However, if the mission plan calls for a tanker to completely refill the stores

of an orbiting space station then m, ;44 would be the fixed quantity.



As an exercise, it can be shown that similarly expressing the tanker’s mass at the end of the mission
cycle (m3) in terms of its structural components, and then equating that with equation (9) will also
yield equation (14).

Profitability Analysis and the Positive Performance Condition

Recall that the second law of thermodynamics dictates that no process can perfectly convert one
form of energy into another without some losses. This is particularly true in the case of a fuel tanker
spacecraft. When discussing profitability in this context, the reference is to the mass of cargo fuel
offloaded at the refueling point compared to the total mass of cargo fuel carried there.

(15) Profitability = P = —o/fload

Mcargo

With this in mind, consider again equation (14). The terms Mgy, fpre and fof, are called design
constraints, and are intrinsic properties of a physical tanker. Ideally they are as low as possible,
but they cannot ever be zero. However, setting them equal to zero and analyzing the simplified
equation provides a useful set of bounds for m 4,4, and mysfioqq- In such a case, equation (14)
becomes

1— R12 cargo 1-— R12 of fload

[1—Riz = Ra]Meargo + Riz " Moffioaa = 0
With the constraint set forth in equation (15), this becomes
[1—Riz — RalMegrgo + Ri2P  Megrgo = 0
[1—Ryz + Ri2P —Rylmegrgo =0
(16) [1—(1—P)Ryy — Rz]mcargo =0

Where (1-P) is a positive quantity, since P must be less than one due to the second law of
thermodynamics. Furthermore, since M, g, is a positive known quantity, the leading coefficient

must be zero.
1_(1_P)R12_R2=0
(1—P)R12+R2 = 1

1 - R2
1-P=
R12

1_R2_R12+R2_1
R12 R12

P=1




In this instance it is more convenient to express P in terms of the mass ratios for each leg of the
mission cycle.

_ (1+Ry)Ry-1
(17) Prax = — R i

Equation (17) is the maximum profitability that can be attained by a fuel tanker. Because this
assumes the spacecraft (excluding the fuel) is entirely made of massless parts, it is impossible to
build a spacecraft with the same delta-v requirements, and cargo load capacity that has a
profitability exceeding this value.

It can be simply shown that B,,,;, < 1 for any combination of values for R; and R,, which is in
holding with the first law of thermodynamics - energy can neither be created nor destroyed. Since
Prax = 1 would imply that no fuel was burned during the mission cycle, and that kinetic energy
was created from nothing.

Conversely, equation (17) has no built-in minimum. From a practical standpoint however, when
Prax < 0 the spacecraft has entered a design-based profitability deficit. Physically this means
that based on the current delta-v requirements, a fuel tanker designed to carry a certain amount of
fuel would burn more fuel than it would deliver.

It is possible to calculate the relationship between the values of R; and R, that would yield a deficit
by setting equation (17) less than or equal to zero.

_A+RYR -1

P, = 0

1+R < !
127,

1_R2
R, <
R;

In order to avoid a deficit, the tanker design must satisfy the inverse:

1-R,
R

(18) R, >

Inequality (18) is called the positive performance condition for an ideal fuel tanker. The values of
Ry and R, that satisfy it represent the mission cycle delta-v’s for which the spacecraft will deliver a
positive profitability rating. (18) provides a useful upper bound for a design’s delta-v requirements.

However, in reality the weight of spacecraft components is not negligible. The propellant mass
fraction of a spacecraft - the total mass of fuel in a spacecraft compared to its initial mass - is an
important determiner of how efficient a spacecraft is. As a point of reference, the Apollo Lunar
Module had a PMF of approximately 0.7, and its ascent stage had a PMF as low as 0.5

[http://www.braeunig.us/space/specs/lm.htm].
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Condition (15) can be applied to equation (14), and after some algebra which is not in itself
particularly insightful, will yield an expression for the profitability of a physical fuel tanker:

_ RZ_(fft+sstruct)(1_R12)
(19) Pinax = R12—(1-R12)fbfe

Where f;; is called the fuel tank factor and is defined by ff; = 1 + f},5+ + fcrr and can be physically
interpreted as the factor by which a given quantity of fuel increases the total mass of the tanker.
Estruce 1S called the structural inefficiency of the design given by &g¢ryyct = Mgtruce/Meargo- FOr an
ideal tanker, fr; = 1 and &5y ¢r = 0.

Note that equation (19) simplifies to equation (17) for an ideal tanker. The terms that represent the
mass contributions of structural components have a damping effect on the end profitability.
Intuitively, this would mean that as a heavier spacecraft carrying the same amount of fuel will in
fact burn more of it to achieve a given delta-v.

As before, equation (19) can be used to determine the positive performance condition. This time
the result is generally applicable to a physical fuel tanker:

(fft"'sstruct) -R2

2 R
( 0) 1 > (fft"'sstruct)RZ

Like equation (19), (20) simplifies to the ideal model (18) when the mass of structural components
is neglected.
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Figure 2 - Example positive performance regimes for an ideal and physical fuel tanker. [http://www.gcalc.net]
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Parting Observations

The purpose of an orbital fuel tanker is to move a quantity of fuel from one location and supply it to
another. It has been shown here that doing so will never result in the full amount being transferred,
while still maintaining the reusability of the tanker. For larger quantities of fuel being moved by
cheaply constructed disposable transports, the profitability is greater over the short term.
However, to conduct multiple return trips reusability is the better investment - for a well-designed
fuel tanker, the profitability will eventually overcome the costs associated with its construction and
launch.

Although the equations outlined here do not concretely outline exactly how such a tanker could be
built, they do provide the means to determine whether a prospective design has the capability to
fulfill its mission requirements and objectives.

If the delta-v requirements are known then the profitability equation, positive performance
condition, and cargo-offload relation will help to determine the cargo and offload ratings for a
particular design. Then, the mass target equations can be used to guide the construction of the
spacecraft on a by-weight basis.

Together, these equations will help designers reduce the number of iterations designers will need
to undergo before design functionality convergence is achieved.



